Inputs: Price((H+L)/2);

Vars:

InPhase(0),

Quadrature(0),

Phase(0),

DeltaPhase(0),

count(0),

InstPeriod(0),

Period(0),

Trendline(0);

If CurrentBar > 5 then begin

{Compute InPhase and Quadrature components}

Value1 = Price - Price[6];

Value2 =Value1[3];

Value3 =.75*(Value1 - Value1[6]) + .25*(Value1[2] - Value1[4]);

InPhase = .33*Value2 + .67*InPhase[1];

Quadrature = .2*Value3 + .8*Quadrature[1];

{Use ArcTangent to compute the current phase}

If AbsValue(InPhase +InPhase[1]) > 0 then Phase =

ArcTangent(AbsValue((Quadrature+Quadrature[1]) / (InPhase+InPhase[1])));

{Resolve the ArcTangent ambiguity}

If InPhase < 0 and Quadrature > 0 then Phase = 180 - Phase;

If InPhase < 0 and Quadrature < 0 then Phase = 180 + Phase;

If InPhase > 0 and Quadrature < 0 then Phase = 360- Phase;

{Compute a differential phase, resolve phase wraparound, and limit delta phase errors}

DeltaPhase = Phase[1] - Phase;

If Phase[1] < 90 and Phase > 270 then DeltaPhase = 360 + Phase[1] - Phase;

If DeltaPhase < 1 then DeltaPhase = 1;

If DeltaPhase > 60 then Deltaphase = 60;

{Sum DeltaPhases to reach 360 degrees. The sum is the instantaneous period.}

InstPeriod = 0;

Value4 = 0;

For count = 0 to 40 begin

Value4 = Value4 + DeltaPhase[count];

If Value4 > 360 and InstPeriod = 0 then begin

InstPeriod = count;

end;

end;

{Resolve Instantaneous Period errors and smooth}

If InstPeriod = 0 then InstPeriod = InstPeriod[1];

Value5 = .25*(InstPeriod) + .75*Value5[1];

{Compute Trendline as simple average over the measured dominant cycle period}

Period = IntPortion(Value5); Trendline = 0;

For count = 0 to Period + 1 begin

Trendline = Trendline + Price[count];

end;

If Period > 0 then Trendline = Trendline / (Period + 2);

Value11 = .33*(Price + .5*(Price - Price[3])) + .67*Value11[1];

if CurrentBar < 26 then begin

Trendline = Price;

Value11 = Price;

end;

Plot1(Trendline, "TR");

Plot2(Value11, "ZL");

end;