FX Trading via Recurrent Reinforcement Learning

Carl Gold
Computation and Neural Systems
Cdlifornia Institute of Technology, 139-74
Pasadena, CA 91125
Email carl g@al t ech. edu

January 12, 2003

Abstract:

This study investigates high frequency currency trading
with neural networks trained via Recurrent Reinforcement
Learning (RRL). We compare the performance of single
layer networks with networks having a hidden layer, and
examine the impact of the fixed system parameters on
performance. In general, we conclude that the trading
systems may be effective, but the performance varies widely
for different currency markets and this variability cannot
be explained by simple statistics of the markets. Also we
find that the single layer network outperforms the two layer
network in this application.

1 INTRODUCTION

Moody and Wu introduced Recurrent Reinforcement
Learning for neural network trading systems in 1996 [1],
and Moody and Saffell first published results for using such
trading systems to trade in a currency market in 1999 [3].
The goal of this study is to extend the results of [3] by giving
detailed consideration to the impact of the fixed parameters
of the trading system on performance, and by testing on a
larger number of currency markets.

Section 2.1 introduces the use of neural networks for trad-
ing systems, while sections 2.2 and 2.3 review the perfor-
mance and training algorithms developed in [1] and [3].
Section 2.4 details the application of these methods to trad-
ing FX markets with a bid/ask spread, while section 3.1 be-
gins to discuss the test data and experimental methods used.
Finally, sections 3.2, 3.3, and 3.4 compare results for differ-
ent markets and for variations of the network and training
algorithm parameters respectively.

2 TRADING WITH NEURAL NETWORKS
2.1 Neural Network Trading Functions

We begin by reviewing the use of recurrent neural net-
works to make trading decisions on a single price series, fol-
lowing the presentation given in [4] with additional details
where appropriate. The input to the neural network is only
the recent price history and the previous position taken. Be-
cause the previous output is fed back to the network as part

of the input, the neural networks are called “recurrent”. The
output of the network F' € [—1,1] at time ¢ is the position
(long/short) to take at that time. Neutral positions are not
allowed so the trader is always in the market, also known as
a “reversal system”. For a single layer neural network (also
known as a perceptron) the trading function is
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where @ and v are the weights and threshold of the neural
network, and r; is the “price returns” at time t. For trading
where a fixed amount is invested in every trade (“Trading
Returns”) , the price returns are given by
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In practice the sign function is replaced with a tanh function
so that derivatives can be taken with respect to the decision
function for training as described in section 2.3. The tanh
function is then thresholded to produce the output.

A more complex and in theory more powerful trading rule
can be made from a neural network with two layers. The
second layer of neurons is also known as the “hidden” layer.
In this case the trading rule is:
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where & are the output of the neurons in the first layer, and
W, ¥, @', and o' are the weights and thresholds for the first
and second layers of the neural network respectively.

2.2 Returnsand Performance

For FX trading it is standard to invest a fixed amount in
each trade. Consequently the profit at time 7' is give by:
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where p is the number of shares traded, and 4 is the trans-
action cost rate per share traded. For test purposes we in-
vest yu = Lt shares per trade so the results in different cur-
rency marlgets are easily comparable as percentage gains and
losses.

We use the Sharpe Ratio to evaluate the performance of
the system for training. The Sharpe Ratio is given by:
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" Standard Deviation(R;)

The standard deviation in the denominator penalizes vari-
ability in the returns.

Calculating the exact Sharpe Ratio at every point in time
results in an O(T?) algorithm, so in order to evaluate the
trader’s performance we use the Differential Sharpe Ratio
[4]. The Differential Sharpe Ratio is derived by considering
a moving average version of the simple Sharpe Ratio (4) :
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where A; and B; are exponential moving estimates of the
first and second moments of R, respectively. The Differen-
tial Sharpe Ratio is derived by expanding the moving aver-
age to first order in the adaptation parameter n, and using the
first derivative term as the instantaneous performance mea-
sure:
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The Differential Sharpe Ratio provides a convenient assess-
ment of the trader’s performance for use in Recurrent Rein-
forcement Learning, described in the next section.

2.3 Recurrent Reinforcement Learning

The goal of Recurrent Reinforcement Learning is to up-
date the weights in a recurrent neural network trader via gra-
dient ascent in the performance function:

du,
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where w; is any weight or threshold of the network at time
t, Uy is some measure of the trading systems performance,
and p is an adjustable learning rate.

We also tested using the “weight decay” variant of the
gradient ascent learning algorithm. Using weight decay, (6)
becomes:

wg=wp 1 +Aw—vwy 1 =wy 1(1 —v)+ Aw

where v is the co-efficient of weight decay. In theory,
weight decay improves neural network performance be-
cause smaller weights will have less tendency to over-fit the
noise in the data. [5]

Due to the path dependence of trading, the exact calcula-
tion of Aw after ¢ trading periods is:
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Note that due to the transaction cost for switching posi-
tion, the return at time ¢ is a function of both the current po-
sition and the previous position. As described in [4] we can
approximate the exact batch learning procedure described
by (7) with an approximate on-line update:
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For the Differential Sharpe Ratio the derivative of the per-
formance function with respect to the returns is:
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For trading returns, the derivatives of the return function are:
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The neural network trading function is recurrent so the
derivatives % for on-line training are calculated in a man-
ner similar to back-propagation through time [4] [6]:
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The derivative of the output function with respect to any
weight in the neural network can be calculated trivially for
the single layer network, and by using a standard back-
propagation algorithm for the two layer neural network. (see
e.g. [5]) Thus all of the derivatives needed for the weight
update given by (6) and (8) are readily available.

The algorithm used for training and trading is as follows:
train the neural network in an initial training period of length
Lyrqin. The trades and performance during the training pe-
riod are used to update the network weights but are then
discarded so that they do not contribute to the final perfor-
mance. The training period may be repeated for any number
of epochs, n.. The training period is then followed by an
out of sample trading period of length L;,..q.. The trades
made during the trading period are the actual trades for the
period, and also update of the network weights continues
during the trading period. After the trading period, the start
of the training period is advanced by L;,.,4. and the process
is repeated for the entire sequence of data.



2.4 Bid/Ask Trading with RRL

As in [3], when RRL is used for a currency series with
bid/ask prices the mid price is used to calculate returns and
the the bid/ask spread is accounted for as the transaction cost
of trading. That is, for a bid/ask price series the price returns
input to the trader in (1) are calculated in terms of the mid-

price, pi* = #, where p¢ and p? are the bid and ask
price at time ¢ respectively, and an equivalent transaction
cost rate is applied in (3) to reflect the loss from position
changes in bid/ask trading. For trading returns the equiva-
lent transaction cost is simply the spread divided by two:
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where the factor of % reflects the fact that the transaction
cost is applied for a single change in position, while in re-
ality the bid/ask spread is lost for a change in position from
neutral to long and back to neutral (or neutral-short-neutral.)
Because currency trading is typically commission free no
further transaction cost is applied. For all experiments trad-
ing and performance is calculated in this way, but the fi-
nal profit was calculated both by the approximate method
described by using (2), (3) and (9), and also by the exact
method of applying all trades at the exact bid and ask prices.
The disagreement between the two methods for calculating

profits was found to be insignificant.

3 EXPERIMENTSWITH CURRENCY TRADING
3.1 Dataand Methods

The RRL traders were tested on the High Frequency Data
in Finance (HFDF) 1996 Currency Market price series 1.
The series give prices for 25 different markets, including
both major and minor currencies. The HFDF data set in-
cludes half hourly bid and ask prices for the entire year, a
total of 17568 samples (note that 1996 was a leap year).

The markets were divided into a tuning set consisting of
10 markets on which the fixed parameters of the algorithm
were tuned to maximize profits and the Sharpe Ratio, and a
test set consisting of the remaining 15 markets in which out
of sample performance was evaluated. The major currency
markets were split equally into the tuning and test sets, but
otherwise the two sets were created at random.

Parameters of the algorithm include the number of neu-
rons in two layers of the network, M and N, the learning
rate, p, the coefficient of weight decay, v, the size of the
training and test windows, Lyyq4in and Ly,qq4e, and the num-
ber of epochs of training, n.. The large number of param-
eters made it quite impossible to systematically test all but
a small number of parameter combinations. The parameters
were tuned by systematically varying each parameter while
holding the other parameters fixed. After all parameters had
been tuned, the previous values would be re-checked to see

10lsen & Associates HFDF96 Data Set, obtainable by contacting
http//:www.olsen.ch

if their optimum value changed due to the change in the
other parameters. (This technique is commonly known as
the “greedy graduate student” algorithm.)

In order to assure that the inputs to the neural networks
were all in a reasonable range regardless of the magnitude
of the prices in the different markets, all price returns were
normalized before being input to the neural networks. In
order to achieve this, the mean and variance of the price
returns was calculated over the first training period (before
beginning training) and then all price returns were normal-
ized to zero mean and unit variance with respect to these
values before being input to the neural network. Also the
data was filtered to remove non-continuous price changes
(i.e. “outliers”) from the data.

3.2 Comparison of Resultsfor Different Markets

Tables 1 and 2 gives the profit and Sharpe Ratio achieved
for each of the currency markets in the tuning set and test set
respectively. The results shown are for the final parameter
values chosen to optimize performance on the tuning data
sets. Overall, both the one layer and the two layer neural
networks trade profitably in most of the currency markets.
However, the final profit level varies considerably across the
different markets, from -80% to 120%. Sharpe Ratios range
from being small or even negative in some markets, to sur-
prisingly high Sharpe Ratios of 7 or 8 in other markets.

It turned out that the performance in the currency mar-
kets chosen for testing was rather better than on the markets
used for parameter tuning. This suggests that in the future
this work would benefit from a cross-validation approach to
determining the optimal parameters. The variability in the
final results for each market is low considering that the ran-
dom initialization of the network weights means that suc-
cessive trials will never lead to identical position sequences,
and that the final results are path dependent.

Overall it is apparent that some of these results seem
rather too good to be true. The explanation for the im-
probably high performance is most likely the simple price
model used in the simulations: a single price quote is used
at each half hour and the trader is guaranteed to transact at
that price. In reality, FX price quotes are noisy and the tick
to tick price returns actually have a negative correlation. [2]
Consequently many of the prices at which the neural net-
works trade in simulation are probably not trade-able in real
time and performance in real trading can be expected to be
worse than the results shown here. Performance with a less
forgiving pricing model is currently under study.

Figure 1 shows single trials of a 1 layer neural net-
work trading in the Pound-Dollar (GBP-USD), Dollar-
Swiss Franc (USD-CHF) and Dollar-Finnish Markka (USD-
FIM) markets. Only in the GBP-USD market is the trader
successful throughout almost the entire year. The USD-
CHF market shows an example of a market in which the
trader makes profits and losses with approximately equal
frequency. The USD-FIM is an example of a market where
the trader loses money much more than it makes money,
most likely because in this market the price movement is
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Figure 1: Examples of single trials of a 1 layer neural network trading in the Pound-Dollar (GBP-USD), Dollar-Swiss Franc
(USD-CHF) and Dollar-Finnish Markka (USD-FIM) Markets. The Sharpe Ratio shown in the bottom plot is the moving

average Sharpe (5) with n = .01.

small compared to the spread (see below). What is worth
noting here is that success and failure for the traders is not
absolute, even at a very coarse time scale: In the markets
where the trader is successful there are sizeable periods
without profits, and in the markets where the trader loses
money overall there are periods where the trader does make
a profit. The positions taken are not shown - in these exam-
ple the average holding time ranged from 4 to 8 hours and
at this scale individual trades would not be visible.

Basic statistics were calculated for the price series in the
tuning markets in an attempt to determine what factors may
influence the ability of the neural networks to profit. Statis-
tics calculated from the moments of the price returns, such
as the mean, variance, skew and kurtosis all showed no cor-
relation with the ability of the neural networks to profit.
However, a measure that did partly explain the profitabil-
ity in the different markets was the average ratio of the ab-
solute price movement to the spread over small windows
of time. As noted above, the neural network traders hold
a position for approximately five hours only. Because the
bid/ask spread is lost when changing positions it is only rea-
sonable to expect that if the movement of the prices is small
compared to the spread then it will not be possible to trade
profitably. This intuitive idea can by easily quantified with
the Movement/Spread ratio, M /S, given by:

M_ 1 Tz*: |Ap™ (t,7)|
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where 7 is the window size for which the ratio is calculated,
5(t, ) is the average spread over a window of length 7 be-

(10)

ginning at time ¢, and Ap™(¢,7) is the change in the mid
price over same window, i.e. p™(t + 1) — p™(¢).

Tables 1 and 2 show the average movement of the mid-
price divided by the bid/ask spread for windows of 7 = 10,
i.e. 5 hours, in each currency series (in the column labeled
“M/S”). For the tuning data set the ratio is calculated for
the entire data series, while for the test data set the ratio
is only calculated for the first training period (in order to
preserve the integrity of the data as a true out of sample per-
formance test.) Looking at the tuning set, neither the single
nor the two layer neural networks make a profit on any cur-
rency where this ratio is close to or below 1. Consequently,
markets where the M/S ratio was below 1.5 were deemed
“un-tradeable” and were ruled out for consideration of the
parameter tuning and for final results in the test set. The
results for the un-tradeable markets are shown in tables 1
and 2 for purpose of comparison. It is a reasonable ques-
tion for further research to determine whether these markets
might be tradeable at a lower frequency so that the move-
ment of the prices would compensate for the spread within
a number of inputs that the neural network can adapt to. At-
tempts to adapt traders to low movement markets by using
a large number of price return inputs at the same data fre-
quency failed.

However, while a low M/S ratio makes profit unlikely, a
high M/S ratio by no means guarantees profitability. For ex-
ample, the USD-CHF market has one of the highest M/S
ratios calculated, yet the neural networks lost money in
this market for all combinations of parameters that were at-
tempted. Linear regression was performed for the M/S ratio



Table 1: Tuning Market Results: Final fixed parameters for 1 layer Neural Network: M =4, p = .01,v =0, Lyyqin = 2000
y Ltrage = 500, n, = 4; Final fixed parameters for 2 layer Neural Network: M =4, N =16,p = .15, v = 1le— 5,
Ligin = 2000, L¢rqqe = 300, n. = 5. Averages and Standard Deviations are calculated for 50 trials of each type of neural
network in each currency market. The Sharpe Ratio is the Annualized Sharpe Ratio, profits are the exact profits described in

section 2.4, and M/ S is the movement/spread ratio described in (10).

1 layer NN 2 layer NN

Market M/S Profit (%) | Sharpe Profit (%) | Sharpe

AUD-USD 196 || 17.7 +£ 0.8 | 2.2 £0.09 || 18.1 2.0 | 2.3 +£0.26
DEM-ESP 117 || -75 £11.0 | -1.74+2.37 || -4.7 +4.4 | -1.1+1.05
DEM-FRF 205 || 313+ 1.3 |6.2+ 0.1 389 +£0.8| 7.7 £0.16
DEM-JPY || 247 || 172 + 12| 21 £0.15 || 105 £1.9 | 1.3 +0.23
GBP-USD 229 || 226 + 0.3 | 3.2 £0.05 || 25.3 +1.1 | 3.6 +0.16
USD-CHF || 268 | -42 + 0.6 | -0.4+0.06 || -15.7+2.1 | -1.5+0.21
USD-FIM 0.90 || -24.9+ 0.3 | -2.4+0.15 || -65.5+3.2 | -6.1+0.30
USD-FRF 281 || 493 +£ 15|59 4+0.04 || 40.1 +£2.0 | 4.8 £0.24
USD-NLG 243 || 221 +£ 0.7 | 24 +£0.09 || 71 +3.4 | 0.8 £0.37
USD-ZAR 1.16 | -82.1+ 4.4 | -8.1+0.41 || -76.84+7.4 | -8.0+0.74
Average, all markets || 42 4+ 2.2 | 09 £0.35 || -2.3 +2.8 | 0.4 +£0.37
Average, M/S > 1.5 || 22.3 £0.74 | 3.1 £0.08 || 17.8 £2.7 | 2.7 £0.23

vs. the Sharpe Ratios for the all the markets - the correlation
co-efficient was .17 for the single layer neural network and
.09 for the two layer neural network. Precisely what char-
acteristics of a currency market make it possible to trade
profitably with an RRL trained neural network is one of the
most important issues for further research in this area.

Table 3 gives some simple per trade statistics for the 1
layer neural network in the tuning markets, including the
holding time and profit per trade. Note that the M/S ratio
has a negative correlation to the mean holding time - the
price series with low M/S ratios tend to have a longer mean
holding time. Linear regression of the holding time to the
M/S ratio on all markets gave a correlation co-efficient of
-.48. This is consistent with the results in [1] and [4] which
showed that RRL training adapts traders to higher transac-
tion cost by reducing the trading frequency. In the case of
FX trading a lower M/S ratio means that that the spread is a
relatively higher equivalent transaction cost and we should
expect trade frequency to be reduced.

3.3 Effect of Network Parameters

The parameters that must be chosen for the neural net-
works are the number of layers in the network and the num-
ber of neurons in each layer. Note that the number of neu-
rons in the input layer is the choice for the number of price
return inputs given to the network (minus one for the recur-
rent input.) Examining tables 1 and 2, one of the most strik-
ing results of this study is that a neural network with a single
layer outperforms a neural network with two layers. This
may seem like a surprise because 2 layer networks are gen-
erally a more powerful learning model; a single layer neural
network can only make decisions that are linearly separa-
ble in the space of the inputs [5]. However, the high level
of noise in financial data may make the learning ability of

the two layer network a liability if it memorizes noise in the
input data. On the other hand, this result seems to imply
that reasonably good trading decisions for FX markets are
in some sense linearly separable in the space of the recent
price returns and therefore not as complex as we may be-
lieve.

Figure 2 shows the effect of the number of price return
inputs on the performance of a single layer neural network
trader. The results shown for three currency markets dis-
play the difficulty of choosing fixed parameters for neural
network currency traders.

While the trader performs best in the Australian Dollar -
US Dollar (AUD-USD) market with fewer inputs, its perfor-
mance in the - Dollar - Dutch Guilder (USD-NLG) market
is best with a larger number of inputs. In the GBP-USD
market performance is best at fewer inputs, but the worst
performance is for traders with an intermediate number of
inputs. This seems to defy common sense, yet the the re-
sult is a genuine quirk of the market. The final number of
price inputs that was chosen to optimize the average per-
formance in the tuning markets was 4. This results is also
rather surprising because it means that the neural network
traders only need the price returns from the most recent two
hours in order to make effective trading decisions.

Comparing the profit with the Sharpe Ratio for the cur-
rency markets in figure 2 shows that there does not appear
to be a tradeoff between profit and stability of returns when
choosing the optimal values for the fixed parameters of the
model. The number of inputs that has the highest profit has
the highest Sharpe Ratio as well. This was true for nearly
all of the fixed parameters and currency markets.

For the two layer neural networks the dependence on the
number of price return inputs was similar, and the final value
chosen for optimal performance in the tuning markets was



Table 2: Test Markets Results: Fixed parameters for the Neural Networks and column headings are the same as described in

table 1.
1 layer NN 2 layer NN

Market M/S Profit (%) | Sharpe Profit (%) | Sharpe

CAD-USD 1.6 76 +£05|19 +£0.13 | -1.3 +£1.0 | -0.3+0.25
DEM-FIM 0.84 12.1 +£09 | 1.8 +£0.14 || 23.7 £1.3 | 3.6 £0.19
DEM-ITL 1.97 68.5 +£15 | 80 +0.19 || 71.9 +£29 | 84 +0.35
DEM-SEK 1.92 488 +£0.6 | 59 +£0.08 || 424 £2.4 | 5.1 £0.31
GBP-DEM 1.64 -20.7 £0.7 | -3.1 £0.10 || -25.7+2.7 | -3.8+0.41
USD-BEF 2.89 555 +44 | 44 +£0.35 || 455 +£4.9 | 3.6 £0.38
USD-DEM 3.39 144 +£1.3 |19 £0.17 || 123 £2.8 | 1.6 £0.36
USD-DKK 2.17 66 =+0.7 |08 +0.09 | -83 +1.9 | -1.0+0.22
USD-ESP 1.25 94 +£71 0.7 +£046 | -6.1 £7.1 | -0.4+0.46
USD-ITL 1.74 118.94+2.2 | 12.04+0.24 || 88.3 1.8 | 9.0 £0.19
UsD-JPY 2.69 132 +£09 | 1.7 +£0.11 || 83 £3.6 | 1.1 +£0.44
USD-MYR 1.50 -19 +£06 | -0.6 +£0.20 || -0.7 +£1.4 | -0.3+0.48
USD-SEK 1.58 359 £1.2 |32 £0.11 || 17.2 £29 | 1.5 £0.27
USD-SGD 0.82 -1.7 £0.3 | -0.4+0.06 || -8.0 £0.7 | -1.84+0.17
USD-XEU 2.31 584 +£05 | 7.3 £0.06 || 46.6 £2.6 | 5.9 £0.34
Average, All Markets || 28.3 +1.6 | 3.0 +£0.16 || 204 +£2.7 | 2.1 +£0.36
Average, M/S > 1.5 37.0 £1.3 | 40 +£0.15 || 27.0 £2.7 | 2.8 £0.37

also 4. The dependence of the result on the number of neu-
rons in the hidden layer was less significant than on the
number of price return inputs. For the more profitable mar-
kets in the tuning set (GBP-USD, DEM-FRF, USD-FRF)
there was no significant dependence on the number of hid-
den units. For the less profitable markets in the tuning set
(AUD-USD, USD-JPY, USD-NLG) there was a slight pref-
erence for more units in the hidden layer and in the end the
number of hidden units that optimized overall performance
in the tuning markets was 16. While this seems to suggests
that the less profitable markets are in some sense more com-
plex and that is why addition hidden layer neurons improve
performance, the fact that the single layer neural network
outperforms the two layer neural network even in these mar-
kets makes this explanation seem untenable.

3.4 Effect of Training Parameters

The parameters of the training algorithm include the
learning rate and the co-efficient of weight decay, p and
v, the length of the training and trading windows, Lyyqin
and Ly,qq4¢, and the number of epochs for training, n.. In
general choosing optimal values for these parameters suffer
from the same difficulties as in choosing the network param-
eters - optimal values for one market may be sub-optimal
for another. Figure 4 illustrates this in the case of the size of
the training window for the two layer neural network trader.
While trading in the AUD-USD market performance is best
with a longer training window, trading USD-FRF the per-
formance is best with a shorter training window. Trading
the DEM-FRF has the best performance at an intermediate
value. Note that the USD-FRF performance with respect to
training window size has the unusual property that as the

profit declines the Sharpe Ratio increases slightly. This is
the only case noted where the Sharpe Ratio was not strongly
correlated with the profit.

While the parameters defining the neural network were
relatively independent of each other (i.e. the optimal num-
ber of price return inputs did not impact the optimal number
of hidden layer neurons or whether the neural network per-
formed better with one or two layers) the parameters of the
training algorithm showed a complex interdependence. Fig-
ure 3 illustrates this in the case of the number of training
epochs n. and the learning rate p for a two layer neural net-
work in the USD-FRF market. For higher learning rates,
fewer training epochs is best, while for lower learning rates
more training epochs are needed. The optimal results overall
were found with a balance between the two as simply using
a high learning rate with a single training epoch generally
gave worse performance than an intermediate learning rate
and number of training epochs.

In the case of weight decay it is worth noting that a small
amount of weight decay (on the order of » = 1e — 5) gave
some benefit to the two layer neural networks. However,
weight decay never helped the single layer neural network
for any combination of parameters tested. This result is not
surprising since weight decay is theoretically a technique for
simplifying the rule learned by the neural network and pre-
venting the neural network from memorizing noise in the
data - the single layer network is already about as simple
a learning rule as possible so it is not surprising that further
simplification gives no benefit. From a different perspective,
the performance of 2 layer neural networks generally suffers
when large weights result in the hidden layer neurons oper-
ating far from the linear range of the tanh function. Because
the 1 layer neural network uses a only a single thresholded



Table 3: Statistics of trades for 1 Layer Neural Network in markets used for tuning: H = average holding time in hours, p
= % profit per trade. Statistics are given for long positions, short positions, winning positions, and losing positions. Py, =

Overall percent of trades which are profitable.

H Hlong Hshort Hwin Hlose P Hong Pshort sz'n -Plose P%
AUD-USD | 5.9 6.9 4.9 4.4 8.2 0.015 | 0.017 | 0.012 | 0.121 | -0.146 | 60.1
DEM-ESP | 7.1 7.8 6.3 5.4 9.1 -0.006 | -0.006 | -0.007 | 0.055 | -0.076 | 53.2
DEM-FRF | 3.1 2.3 3.9 2.2 4.7 0.015 | 0.016 | 0.013 | 0.057 | -0.052 | 61.2
DEM-JPY | 3.8 35 4.2 2.9 5.3 0.010 | 0.013 | 0.007 | 0.110 | -0.143 | 60.3
GBP-USD | 3.7 4.1 3.3 2.6 5.6 0.012 | 0.019 | 0.005 | 0.081 | -0.115 | 64.9
USD-CHF | 4.1 3.7 4.5 2.7 6.1 | -0.002 | 0.003 | -0.008 | 0.111 | -0.162 | 58.3
USD-FRF 3.8 35 4.2 2.8 5.8 0.027 | 0.029 | 0.026 | 0.111 | -0.126 | 64.7
USD-FIM 7.8 8.8 6.7 55 10.4 | -0.026 | 0.004 | -0.056 | 0.173 | -0.261 | 54.1
USD-NLG | 4.8 6.8 2.8 4.1 5.8 0.015 | 0.021 | 0.009 | 0.137 | -0.150 | 57.6
USD-ZAR | 11.0 | 134 8.6 9.0 12.2 | -0.122 | -0.104 | -0.140 | 0.162 | -0.296 | 38.1
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Figure 2: The effect of the number of price return inputs on
the profit and Sharpe Ratio for single layer neural networks
for three markets in the tuning data set. In all plots the x
axis shows the number of inputs, M, and the y axis shows
the profit (left column) or the annualized Sharpe Ratio (right
column.) The neural networks also have an additional recur-
rent input not counted in this plot. All other system param-
eters are fixed at values given in table 1. Results shown are
averages and standard deviation for 25 trials.

tanh unit it is in fact a simple linear function and the func-
tion is completely unchanged when all the weights are mul-
tiplied by an arbitrary constant.

4 CONCLUSIONS

The results presented here suggest that neural networks
trained with Recurrent Reinforcement Learning can make
effective traders in currency markets with a bid/ask spread.
However, further testing with a more realistic and less for-
giving model of transaction prices is needed. Initial exper-

Figure 3: The relationship between Training Epochs and
Learning Rate for a two layer neural network in the USD-
FRF market. In all plots the x axis shows the number of
training epochs, n., and the y axis shows the profit (left col-
umn) or the annualized Sharpe Ratio (right column.) All
other system parameters are fixed at values given in table
1. Results shown are averages and standard deviation for 25
trials.

iments suggest that performance is substantially decreased
and the dependence on the fixed parameters is altered when
the the traders cannot automatically transact at any price
which appears in the quote series. These experiments are
now underway and will be reported when complete.
Regardless of the price model used, the RRL method
seems to suffer from a problem that is common to gradient
ascent training of neural networks: there are a large number
of fixed parameters that can only be tuned by trial and error.
Despite extensive experiments we cannot claim that we have
found the optimal fixed parameters for currency trading in
general as the possible combinations of parameters is very
large and many of the parameters have a complex interde-
pendence. A problem that is specific to the currency trading
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Figure 4: The effect of the size of the training window on the
performance of a 2 layer neural network trader. In all plots
the x axis shows the size of the training window, L4, and
the y axis shows the profit (left column) or the annualized
Sharpe Ratio (right column.) All other system parameters
are fixed at values given in table 1. Results shown are aver-
ages and standard deviation for 25 trials.

applications is that performance depends heavily on charac-
teristics of the currency markets which are understood only
poorly at this time. We can rule out trading in sluggish mar-
kets with a low ratio of absolute price movement to bid/ask
spread, but this criteria does not have predictive value for
the performance in markets with adequate price movement.

These conclusions point to a few avenues for further re-
search. Probably the most important need is a more in depth
analysis of the properties of the different currency markets
that lead to the widely varying performance of the neural
network traders. Another interesting question is how the
performance may benefit from giving the traders data other
than the recent price series, such as interest rates or other
information which has an impact on currency markets. Fi-
nally, a more open ended goal is to achieve a greater theo-
retical understanding of how and why Recurrent Reinforce-
ment Learning works that may answer questions like why
some markets are tradeable and others not, if we can im-
prove the performance of the neural networks further, or
adapt the principle of the RRL method to other learning
models such as Radial Basis Functions or Support \ector
Machines that do not rely on gradient ascent for parameter
tuning.
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