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Abstract

We derive dynamic optimal trading strategies that minimize the expected cost
of trading a large block of equity over a fixed time horizon. Specifically, given a fixed
block SM of shares to be executed within a fixed finite number of periods ¹, and given
a price-impact function that yields the execution price of an individual trade as a
function of the shares traded and market conditions, we obtain the optimal sequence
of trades as a function of market conditions — closed-form expressions in some cases —
that minimizes the expected cost of executing SM within ¹ periods. Our analysis is
extended to the portfolio case in which price impact across stocks can have an important
effect on the total cost of trading a portfolio. ( 1998 Elsevier Science B.V. All rights
reserved.

JEL classification: G23

Keywords: Market microstructure; Transactions costs; Portfolio management

1. Introduction

The tremendous growth in equity trading over the past 20 years, fueled largely
by the burgeoning assets of institutional investors such as mutual and pension
funds, has created a renewed interest in the measurement and management of
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1There is a large and diverse literature on transactions costs in economics and finance. Niehans
(1987) provides an excellent review of the transactions costs literature in economics.

The impact of transactions costs on financial decision-making has been considered by Aiyagari
and Gertler (1991), Bensaid et al. (1992), Boyle and Vorst (1992), Cohen et al. (1981), Constantinides
(1986), Davis and Norman (1991), Dumas and Luciano (1991), Epps (1976), Garman and Ohlson
(1981), Grossman and Miller (1988), Grossman and Vila (1992), Heaton and Lucas (1994, 1995),
Hodges and Neuberger (1989), Litzenberger and Rolfo (1984), Leland (1985), Magill and Constantin-
ides (1976), Tuckman and Vila (1992), Vayanos (1995), Vayanos and Vila (1995), and many others.

Empirical studies of transactions costs in financial markets include Berkowitz et al. (1988), Birinyi
(1995), Brennan and Copeland (1988), Chan and Lakonishok (1993, 1995), Demsetz (1968), Has-
brouck and Schwartz (1988), Huang and Stoll (1995), Keim and Madhavan (1995a,b,c), Kraus and
Stoll (1972), Schwartz and Whitcomb (1988), Stoll (1989, 1993), Tinic7 (1972), and Turnbull and White
(1995).

And the more practical aspects of transactions cost management have been explored by Arnott
and Wagner (1990), Bodurtha and Quinn (1990), Brinson et al. (1986), Brinson et al. (1991), Collins
and Fabozzi (1991), Cuneo and Wagner (1975), Gammill and Pérold (1989), Loeb (1983), Pérold
(1988), Treynor (1981), Wagner and Banks (1992), Wagner and Edwards (1993), and the papers in
Sherrerd (1993).

2See also Bodurtha and Quinn (1990), Brinson et al. (1986), Brinson et al. (1991), Chan and
Lakonishok (1993, 1995), Hasbrouck and Schwartz (1988), Keim and Madhavan (1995a,b,c), Loeb
(1983), Treynor (1981), and Turnbull and White (1995).

trading costs.1 Such costs — often called ‘execution costs’ because they are
associated with the execution of investment strategies — include commissions,
bid/ask spreads, opportunity costs of waiting, and price impact from trading
(see Loeb, 1983 and Wagner, 1993 for further discussion), and they can have
a substantial impact on investment performance. For example, Pérold (1988)
observes that a hypothetical or ‘paper’ portfolio constructed according to the
Value Line rankings outperforms the market by almost 20% per year during the
period from 1965 to 1986, whereas the actual portfolio — the Value Line Fund
— outperformed the market by only 2.5% per year, the difference arising from
execution costs.2 This ‘implementation shortfall’ is surprisingly large and under-
scores the importance of execution-cost control, particularly for institutional
investors whose trades often comprise a large fraction of the average daily
volume of many stocks.

There has also been considerable interest from the regulatory perspective in
defining ‘best’ execution, especially in the wake of recent concerns about NAS-
DAQ trading practices, the impact of tick size on trading costs, and the
economic consequences of market fragmentation. Indeed, Macey and O’Hara
(1996) observe that ‘. . . while the obligation to give customers the benefits of
best-execution of orders is one of the most well-established principles of secur-
ities law, and despite the fact that the concept of best execution is continually
referred to in cases, treatises, law review articles, exchange rules, and administra-
tive proceedings, no clear definition of best execution exists’.
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3We do not consider the selection of the particular type of trade — limit versus market order — in
a dynamic context. For an analysis of this complementary and important issue, see Angel (1994),
Bernhardt and Hughson (1994), Harris (1994), Hasbrouck and Harris (1992), Kumar and Seppi
(1993), and Lo et al. (1998).

In this paper, we provide one clear definition of best execution, based on the
minimization of the expected cost of execution using stochastic dynamic pro-
gramming. While dynamic optimization is certainly not new to financial econ-
omics (see, for example, Merton, 1969; Samuelson, 1969), the use of dynamic
programming in defining best execution is novel. In particular, our approach
explicitly recognizes the fact that trading takes time, and that the very act of
trading affects not only current prices but also price dynamics which, in turn,
affects future trading costs. Therefore, defining and controlling execution costs
are fundamentally dynamic problems, not static ones, a fact recognized impli-
citly by Pérold (1988) and most professional portfolio managers, and developed
explicitly here.

Indeed, recent studies by Chan and Lakonishok (1995) and Keim and Mad-
havan (1995a,b,c) show that because the typical institutional investor’s trades
are so large, they are almost always broken up into smaller trades executed over
the course of several days. Chan and Lakonishok call such sequences ‘packages’,
and using a sample of 1.2 million transactions of 37 large investment manage-
ment firms during the period from July 1986 to December 1988, they show that
only 20% of the market value of these packages are completed within a day and
that over 53% are spread over four trading days or more (Chan and
Lakonishok, 1995, Table 1). For this reason, best execution cannot be defined as
a single number or in the context of a single trade — it is a strategy that unfolds
over the course of several days and which ought to adapt to changing market
conditions.

Dynamic optimization provides a compelling economic rationale for trading
in packages: properly parceled packages minimize the expected costs of execu-
tion over a fixed time horizon. In particular, we propose and solve the following
problem in this paper: given a fixed block SM of shares to be executed within
a fixed finite number of periods ¹, and given price dynamics that capture price
impact, i.e., the execution price of an individual trade as a function of the shares
traded and other ‘state’ variables, find the optimal sequence of trades (as
a function of the state variables) that will minimize the expected cost of
executing SM within ¹ periods.3

Using stochastic dynamic programming, we obtain explicit closed-form ex-
pressions for these optimal trading strategies, which we call best-execution
strategies, for various specifications of price dynamics. We show that best-
execution strategies can sometimes be expressed as a linear combination of
a naive (and not uncommon) strategy — breaking up SM shares evenly into
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4For simplicity, we consider buying SM only — selling SM is symmetric and the solution follows
directly from our analysis below with only minor changes in notation.

a package of ¹ trades each of size SM /¹ — and a correction factor that adjusts each
trade size up or down according to additional information, e.g., stock-specific
private information, opportunity costs, changing market conditions, etc. In the
absence of such information, we derive conditions under which the naive
strategy is optimal: an arithmetic random walk for prices with linear price
impact (see Section 2.3). We also show by construction that apart from these
rather restrictive and empirically implausible conditions, the naive strategy is
not optimal in general.

We also obtain the expected cost of best execution — the optimal-value
function which is given recursively by the Bellman equation — as a by-product of
the optimization process, which may serve as a useful benchmark for pricing
principal-bid and negotiated-block transactions. The typical broker/dealer en-
gaging in such transactions will not willingly hold large positions for long, and
will seek to trade out of these positions as quickly and as cost-effectively as
possible, i.e., he will seek best-execution strategies for his holdings. Of course,
risk aversion, adverse selection, and inventory and opportunity costs may
change the objective function to be minimized, in which case our benchmark
may only be a lower bound on the fair market price of a block transaction.
Nevertheless, even in these cases the problem of best execution is still a dynamic
optimization problem and our approach is still applicable (although closed-
form expressions for best-execution strategies may not be available).

Moreover, we show that our basic approach — described in Sections 2 and
3 — can be extended in several important ways: (1) specifying more general
price-impact functions and deriving numerical solutions (Section 4); (2) trading
a portfolio of stocks simultaneously (Section 5); and (3) imposing constraints
such as no-sales or, in the portfolio case, a maximum dollar amount invested
(Section 6). These results comprise a systematic and quantitative approach to
defining and controlling execution costs, measuring the liquidity of large-block
transactions, and rationalizing within an economic paradigm the kind of infor-
mal trading practices that characterize many institutional equity investors.

2. The basic model

Consider an investor seeking to acquire a large block of SM shares of some
stock over a fixed time interval [0, ¹].4 Since it is well-known that the short-
term demand curves for even the most actively traded equities are not perfectly
elastic, a market order at date 0 for the entire block SM is clearly not an optimal
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5For theoretical models that provide economic motivation for the existence of price impact, see
Allen and Gale (1992), Easley and O’Hara (1987), Foster and Viswanathan (1990), Jarrow (1992),
Kyle (1985, 1989), Vayanos (1992), and Vila (1989). For empirical studies of price impact, see Barclay
and Warner (1993), Bodurtha and Quinn (1990), Chan and Lakonishok (1993, 1995), Hausman et al.
(1992), Holthausen et al. (1987, 1990), Keim and Madhavan (1995b,c), Kraus and Stoll (1972), and
Shleifer (1986).

6 If 30 minute intervals are deemed too long for a given trading horizon, either because of
volatility or opportunity cost, ¹ can be increased and the parameters of the optimization problem
rescaled accordingly. Of course, a more natural way to handle the timing issue is to re-cast this
problem in continuous time. However, the analysis becomes considerably more complex and
closed-form solutions are difficult to obtain (see, for example, Davis and Norman, 1990; Magill and
Constantinides, 1976). Moreover, for empirical applications continuous-time models must be
discretized. Therefore, we take a discrete-time approach throughout this paper.

trading strategy.5 A more effective strategy would be to break SM into smaller
purchases distributed throughout the interval [0, ¹], but how should such
purchases be parceled out?

The answer depends, of course, on the degree to which a purchase affects the
market price, i.e., the ‘price impact’ and the dynamics of future market prices.
Given a particular price-impact function, e.g., the ordered probit model of
Hausman et al. (1992), and a specification for the price dynamics, e.g., a random
walk, a dynamic optimal trading strategy that minimizes the expected total cost
of acquiring SM in [0, ¹] may be obtained by stochastic dynamic programming.

2.1. Defining best execution

To illustrate this approach, suppose that at time 0 the investor begins his
program to acquire SM shares, and this program must be completed by time ¹.
With little loss in generality, let time be measured in discrete intervals of unit
length. Since the length of a ‘period’ is arbitrary, it can be set to accommodate
even the finest trading-decision interval that is of practical relevance. For
example, if the decision to acquire SM is made at the start of the day and the
acquisition must be completed by the day’s end, setting ¹"13 yields 30 minute
intervals from the 9:30 am market open to the 4:00 pm market close. If the
acquisition is part of an end-of-quarter portfolio rebalancing, the trading hor-
izon may be extended to three or four days, in which case ¹ increases propor-
tionally.6 Although all of our results are qualitatively independent of both the
time horizon and the number of trading periods (with the exception of numerical
examples, of course), for concreteness the length of each period should be
regarded as some fraction of a single day and related parameters should be
calibrated accordingly.

Denote by S
t
be the number of shares acquired in period t at price P

t
, where

t"1, 2,2, ¹. Then the investor’s objective of minimizing execution costs may
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7Although we refer to hS
t
as a price-impact function, it is a simple matter to modify it include

other components of execution costs such as commissions, a bid/ask spread, and opportunity cost.
However, for expositional convenience we shall refer to hS

t
simply as price impact throughout this

paper.

be expressed as:

Min
MSt

N

E
1C

T
+
t/1

P
t
S
tD (2.1)

subject to the constraint

T
+
t/1

S
t
"SM . (2.2)

We may also wish to impose a no-sales constraint, i.e., S
t
*0 (after all, it is

difficult to justify selling stocks as part of a buy-program), but for expositional
convenience we shall ignore these constraints for now and return to them in
Section 6.

To complete the statement of the problem, we must specify the ‘law of motion’
for P

t
. This includes two distinct components: the dynamics of P

t
in the absence

of our trade (the trades of others may be causing prices to fluctuate), and the
impact that our trade of S

t
shares has on the execution price P

t
. For simplicity,

suppose that the former component is given by an arithmetic random walk, and
the latter component is simply a linear function of trade size so that a purchase
of S

t
shares may be executed at the prevailing price P

t~1
plus an impact

premium of hS
t
, h'0.7 Then the law of motion for P

t
may be expressed as:

P
t
"P

t~1
#hS

t
#e

t
, h'0, E[e

t
DS

t
, P

t~1
]"0 (2.3)

where e
t
is assumed to be a zero-mean independently and identically distributed

(IID) random shock, i.e., white noise.
Observe that the two components — price impact and price dynamics — can be

separated. A nonlinear price impact function can easily be incorporated into the
random walk specification, and non-random-walk dynamics can be combined
with a linear price impact function. However, these two components interact in
important ways. For example, Eq. (2.3) implies that price impact has a ‘perma-
nent’ effect on the price level because of the random-walk specification of the
price dynamics. It is this interaction between price impact and price dynamics
that makes execution-cost control a dynamic optimization problem. This inter-
action also explains the difficulties in developing a clear economic definition of
best execution: such a definition requires the specification of price dynamics as
well as price impact, and these vary from one stock to another, and may well
vary over time (see Bertsimas et al., 1998 for further details).
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Despite the fact that Eq. (2.3) has some implausible empirical implications
— independent price increments, positive probability of negative prices, percent-
age price impact that decreases with price, permanent price impact, etc. — it
provides a concrete illustration of the more general and considerably more
complex analysis which we shall present in later sections. Moreover, we shall see
in Section 2.3 that Eq. (2.3) is precisely the dynamics necessary to render the
naive strategy of dividing SM into ¹ trades each of size SM /¹ the optimal one.

The investor’s problem is now well-posed: find the sequence of trades MS
t
N that

minimizes the expected execution costs E
0
[+T

t/1
P

t
S
t
], subject to the constraint

that +T
t/1

S
t
"SM , and given a linear price-impact function incorporated into the

law of motion (2.3) for P
t
. This is a classical optimal control problem which can

be solved by stochastic dynamic programming, and we define the best-execution
strategy as its solution.

2.2. The Bellman equation

The basic ingredients for any dynamic programming problem are the state of
the environment at time t, the control variable, the randomness, the cost
function, and the law of motion. In our context, the state at time t"1,2, ¹
consists of the price P

t~1
realized at the previous period, and ¼

t
, the number of

shares that remain to be purchased. The state variables summarize all the
information the investor requires in each period t to make his decision regarding
the control. The control variable at time t is the number of shares S

t
purchased.

The randomness is characterized by the random variable e
t
. The objective is

given by Eq. (2.1), while the law of motion is given by Eq. (2.3) and an additional
state equation which measures the remaining number of shares to be traded:

¼
t
"¼

t~1
!S

t~1
, ¼

1
"SM , ¼

T`1
"0, (2.4)

where the boundary condition ¼
T`1

"0 is equivalent to the constraint that
SM must be executed by period ¹.

The dynamic programming algorithm is based on the observation that
a solution or ‘optimal control’ MS*

1
, S*

2
,2, S*

T
N must also be optimal for the

remaining program at every intermediate date t. That is, for every t, 1(t(¹

the sequence MS*
t
, S*

t`1
,2, S*

T
N must still be optimal for the remaining program

E
t
[+T

k/t
P
k
S
k
]. This important property is summarized by the Bellman equation

(2.5), which relates the optimal value of the objective function in period t to its
optimal value in period t#1:

»
t
(P

t~1
, ¼

t
)"Min

St

E
t
[P

t
S
t
#»

t`1
(P

t
, ¼

t`1
)]. (2.5)

By starting at the end (time ¹) and applying the Bellman equation (2.5) and the
law of motion for P

t
, Eq. (2.3) and ¼

t
, Eq. (2.4), recursively, the optimal control
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can be derived as functions of the state variables that characterize the informa-
tion that the investor must have to make his decision in each period.

In particular, the optimal-value function »
T
( ) ), as a function of the two state

variables P
T~1

and ¼
T
, is given by

»
T
(P

T~1
, ¼

T
)"Min

ST

E
T
[P

T
¼

T
]"(P

T~1
#h¼

T
)¼

T
. (2.6)

Since this is the last period and ¼
T`1

must be set to 0, there is no choice but to
execute the entire remaining order ¼

T
, hence the optimal trade size S*

T
is simply

¼
T
. Substituting the law of motion (2.3) into P

T
¼

T
yields »

T
as a function of

P
T~1

and ¼
T
.

In the next-to-last period ¹!1, the Bellman equation is less trivial:

»
T~1

(P
T~2

, ¼
T~1

)"Min
ST~1

E
T~1

[P
T~1

S
T~1

#»
T
(P

T~1
, ¼

T
)] (2.7)

"Min
ST~1

E
T~1

[(P
T~2

#hS
T~1

#e
T~1

)S
T~1

#»
T
(P

T~2
#hS

T~1

#e
T~1

, ¼
T~1

!S
T~1

)]. (2.8)

By substituting the right-hand side of Eq. (2.6) into Eq. (2.8), and substituting
for ¼

T
and P

T~1
using Eqs. (2.3) and (2.4), respectively, the right-hand side of

Eq. (2.8) may be cast as an explicit function of S
T~1

which can be minimized by
taking its derivative with respect to S

T~1
and solving for its zero. This yields:

S*
T~1

"¼
T~1

/2 , (2.9)

»
T~1

(P
T~2

, ¼
T~1

)"¼
T~1

(P
T~2

#3
4
h¼

T~1
), (2.10)

where Eq. (2.10) is obtained by substituting S*
T~1

into Eq. (2.8).
Continuing in this fashion, the optimal trades S*

T~k
and the optimal-value

function »
T~k

(P
T~k~1

, ¼
T~k

) may be obtained recursively as:

S*
T~k

"¼
T~k

/(k#1) (2.11)

»
T~k

(P
T~k~1

, ¼
T~k

)"¼
T~k APT~k~1

#

k#2

2(k#1)
h¼

T~kB , (2.12)

until we reach the beginning of the program and find

S*
1
"¼

1
/¹ (2.13)

»
1
(P

0
, ¼

1
)"¼

1 AP0
#

¹#1

2¹
h¼

1B . (2.14)
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2.3. The best-execution strategy

Substituting the initial conditional ¼
1
"SM into Eqs. (2.13) and (2.14) then

yields the optimal trade size S*
1

as an explicit function of SM , and the expected
best-execution cost »

1
as an explicit function of SM , P

0
, and the price-impact

parameter h:

S*
1
"SM /¹, (2.15)

»
1
(P

0
, ¼

1
)"E

1C
T
+
t/1

P
t
S*
t D"P

0
SM #

hSM 2
2 A1#

1

¹B . (2.16)

By forward substitution using Eqs. (2.15), (2.11) and (2.4), we find that

S*
1
"S*

2
"2"S*

T
"SM /¹. (2.17)

The best-execution strategy is simply to divide the total order SM into ¹ equal
‘waves’ and trade them at regular intervals.

This remarkably simple trading strategy comes from the fact that the price
impact hS

t
does not depend on either the prevailing price P

t~1
or the size of the

unexecuted order ¼
t
, hence the price-impact function is the same in each period

and independent from one period to the next. But since each period’s execution
cost P

t
S
t
is a convex (quadratic) function of S

t
, the sum of these single-period

execution costs will be minimized at the point where the marginal execution
costs are equated across all periods. There is no advantage to shifting trades to
one period or another — they all offer the same trade-offs to the objective
function — hence the trade sizes should be set equal across all periods. Note that
in this case the optimal controls MS*

t
N are all non-negative hence the non-

negativity constraints could have been imposed trivially.
The optimal-value function at time 1, »

1
(P

0
, ¼

1
), gives the expected cost of the

best-execution strategy and we see from Eq. (2.16) that this cost is the sum of two
terms: the no-impact cost P

0
SM and the cumulative price impact hSM 2(1#(1/¹))/2.

Observe that while the impact term is a decreasing function of ¹ — having more
time to acquire SM can never increase the expected cost — the cumulative price
impact does not vanish as ¹ increases without bound. This seems counterintui-
tive since one might expect price impact to become negligible if there is no time
limit on completing the purchase. However, observe that our law of motion for
P
t
, Eq. (2.3), implies that the price impact hS

t
of an individual trade has

a permanent effect on P
t
, hence even infinitesimally small trades will have an

impact on next period’s price, and the limiting sum of all these infinitesimal
trades multiplied by infinitesimally increased prices is finite and non-zero: hSM 2/2.

These results underscore the importance of the law of motion’s specification
in determining the total expected cost of executing SM . Of course, Eq. (2.3) is
empirically implausible for a number of reasons. However, it serves a useful
purpose in demonstrating the basic approach to best execution, as well as in

D. Bertsimas, A.W. Lo/Journal of Financial Markets 1 (1998) 1—50 9



rationalizing the rather common practice of parceling a large trade into smaller
pieces of equal size and submitting them at regular intervals over some fixed
time span. This naive strategy is indeed optimal if the price-impact function and
price dynamics of P

t
are given by Eq. (2.3).

In the next section we present a closed-form solution for the best-execution
strategy under a more complex price-impact function, one which depends both
on the trade size and a serially-correlated state variable that proxies for informa-
tion such as proprietary research or market conditions. With information, the
best-execution strategy differs in important ways from the naive strategy
S*
t
"SM /¹. In particular, the best-execution strategy becomes a nontrivial func-

tion of the information variable and can sometimes exhibit counterintuitive
trading patterns.

2.4. Linear price impact with information

Suppose that the price-impact function is linear in S
t
as in Eq. (2.3), but now

let X
t
denote a serially-correlated state variable which also affects the execution

price P
t
linearly, hence

P
t
"P

t~1
#hS

t
#cX

t
#e

t
, h'0 (2.18)

X
t
"oX

t~1
#g

t
, o3(!1, 1) (2.19)

where e
t
and g

t
are independent white noise processes with mean 0 and variances

p2e and p2g , respectively.
The presence of X

t
in the law of motion for P

t
captures the potential impact of

changing market conditions or of private information about the security. For
example, X

t
might be the return on the S&P 500 index, a common component in

the prices of most equities. Broad market movements affect all securities to some
degree, and c measures the sensitivity of this particular security to such market
movements.

Alternatively, X
t
might represent some private information about the secur-

ity, and c the importance of that information for P
t
. In particular, X

t
may denote

the output of an ‘alpha model’ which incorporates stock-specific analysis to
yield an excess return not yet impounded into market prices.

In either case, the impact of X
t
on the execution price, and the time series

properties of X
t
have important implications for the best-execution strategy.

Having specified the linear price-impact function with information in Eqs. (2.18)
and (2.19), the best-execution strategy and optimal-value function can be ob-
tained by dynamic programming as before (see the Appendix), and is given by

S*
T~k

"d
w, k

¼
T~k

#d
x, k

X
T~k

, (2.20)

»
T~k

(P
T~k~1

, X
T~k

, ¼
T~k

)"P
T~k~1

¼
T~k

#a
k
¼2

T~k

#b
k
X

T~k
¼

T~k
#c

k
X2

T~k
#d

k
(2.21)
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8 In particular, a one-unit increase in X
T~k

implies an expected increase in P
T~k`1

of co, an
expected increase in P

T~k`2
of co2, and so on.

for k"0, 1,2, ¹!1, where

d
w, k

,

1

k#1
, d

x, k
,

ob
k~1

2a
k~1

(2.22)

and

a
k
"

h
2A1#

1

k#1B, a
0
"h,

b
k
"c#

hob
k~1

2a
k~1

, b
0
"c,

c
k
"o2c

k~1
!

o2b2
k~1

4a
k~1

, c
0
"0,

d
k
"d

k~1
#c

k~1
p2g , d

0
"0. (2.23)

Since we assume h'0, a
k
is positive, and c

k
and d

k
are negative for all k'0. The

sign of b
k

can vary, but is positive for all k'0 if h, c, and o are all positive.
In contrast to the case of a linear price-impact function with no information,

the best-execution strategy (2.20) varies over time as a linear function of the
remaining shares ¼

T~k
and the information variable X

T~k
. In particular, the

first term of Eq. (2.20) is simply the naive strategy of dividing the remaining
shares ¼

T~k
at time ¹!k evenly over the remaining k#1 periods.

The second term of Eq. (2.20) is an adjustment that arises from the presence of
serially correlated information X

T~k
. Observe that this term vanishes if o"0.

When o"0 this implies that X
T~k

is unforecastable, and while X
T~k

still has an
impact on the current execution price, observing X

T~k
tells us nothing about

expected future execution prices hence it can no longer affect the best-execution
strategy.

If o'0 and we assume, without loss of generality, that c'0, then d
x,k

in
Eq. (2.20) is also positive, implying that positive realizations of X

T~k
increases

the number of shares purchased at ¹!k, ceteris paribus. This may seem
counterintuitive at first because a positive X

T~k
necessarily increases the execu-

tion price P
T~k

by cX
T~k

, so why trade more?
The answer may be found in the fact that X

T~k
is positively serially corre-

lated, hence X
T~k

'0 implies that future realizations are likely to be positive
which, in turn, implies additional expected increases in future execution prices.8
Therefore, although a positive X

T~k
makes it more costly to purchase shares in
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period ¹!k, this additional cost is more than offset by the sequence of ex-
pected future price increases that arise from positively serially-correlated
information.

Alternatively, if o(0 so that X
T~k

exhibits reversals, Eq. (2.20) shows that
a positive realization of X

T~k
decreases the number of shares purchased, ceteris

paribus: it is more expensive to trade in period ¹!k and X
T~k

is likely to
reverse next period making it less expensive to trade then, hence it is optimal to
trade less now.

The impact of an increase in X
T~k

on expected best-execution costs may be
measured explicitly by the derivative of the optimal-value function »

T~k
with

respect to X
T~k

:

L»
T~k

/LX
T~k

"b
k
¼

T~k
#2c

k
X

T~k
. (2.24)

Suppose c and o are positive so that b
k
is positive. Since c

k
is always negative, the

impact of an increase in X
T~k

on the expected best-execution cost depends on
whether b

k
¼

T
outweighs 2c

k
X

T~k
. For empirically plausible parameter values,

the first term will generally dominate the second, hence increases in X
T~k

will
typically increase the expected best-execution cost, a sensible implication given
that an increase in X

T~k
increases current and all future expected prices.

It is also not surprising that »
T~k

is an increasing function of ¼
T~k

for
empirically plausible parameter values — the larger is the unexecuted portion of
the initial block, the higher the expected best-execution cost. In the next section,
we provide a numerical example to illustrate the behavior of the best-execution
strategy under several simulated scenarios.

2.5. A numerical example

Tables 1—3 provide illustrative numerical examples of the best-execution
strategies under the linear price-impact function with information (2.18)—(2.19)
for three simulated realizations of the information variable X

t
and pricing

shocks e
t
. The goal is to minimize the expected execution costs of a 100,000-

share purchase over ¹"20 periods for a stock currently trading at P
0
"$50,

given the following parameter values:

h"5]10~5, c"5.0, o"0.50, p2e"(0.125)2, p2g"0.001.

To develop some intuition for these parameters, observe that the no-impact cost
of acquiring SM is 100,000]P

0
"$5M, and the expected full-impact cost is

100,000]E[P
0
#hSM #cX

1
#e

1
]"100,000]$55"$5.5 million

since E[X
t
]"0 from Eq. (2.19), hence h is calibrated to yield an impact

of $500,000 on a 100,000-share block purchase. From Eq. (2.19) it also
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Table 1
Best-execution strategies for acquiring a 100,000-share block of stock within 20 periods, for
a simulated realization of the information variable MX

t
N and price shock Me

t
N, assuming an initial

price P
0
"$50 and linear price-impact function hS

t
#cX

t
, where P

t
"P

t~1
#hS

t
#cX

t
#e

t
and

h"5]10~5, c"5.0, X
t
"oX

5~1
#g

t
, X

0
"0, p2g"0.001, p2e"(0.125)2, and o"0.50. Note: The

non-negativity restriction was not imposed and was not binding in this realization.

Performance summary

Metric Naive strategy
($1000s)

Optimal strategy
($1000s)

Improvement
(cents/share)

Expected cost 5255.2 5251.4 3.7899
Actual cost 5314.9 5296.6 18.2906

Period P
t

S*
t

d
w,T~t

¼
t

d
x,T~t

X
t

cX
t

»
t
/$1000 Cost-to-go

1 49.994 4307 5000 !693 !0.04 5251.4 5296.6
2 50.187 5470 5036 434 0.02 5026.0 5081.3
3 50.666 6383 5012 1371 0.08 4752.7 4806.7
4 50.572 2114 4932 !2817 !0.16 4405.4 4483.3
5 50.783 5680 5108 572 0.03 4312.7 4376.4
6 51.091 6250 5070 1180 0.07 4023.2 4087.9
7 51.673 8527 4985 3542 0.21 3720.6 3768.7
8 52.169 8423 4713 3710 0.22 3289.4 3328.0
9 52.923 8230 4404 3827 0.23 2852.6 2888.6

10 53.547 8227 4056 4171 0.25 2434.1 2453.0
11 54.213 6916 3639 3278 0.20 1996.7 2012.5
12 54.414 3182 3275 !92 !0.01 1620.6 1637.5
13 54.935 6578 3286 3292 0.22 1458.9 1464.4
14 55.086 3040 2816 224 0.02 1093.9 1103.0
15 55.615 4743 2779 1965 0.15 930.0 935.6
16 56.095 4305 2386 1919 0.16 670.3 671.8
17 56.132 1465 1906 !441 !0.04 428.8 430.3
18 56.402 2621 2053 569 0.07 347.5 348.1
19 56.475 1617 1768 !152 !0.03 199.8 200.2
20 56.722 1920 1920 0 !0.02 108.9 108.9

follows that:

JVar[cX
t
]"

cpg
J1!o2

"0.183

hence the standard deviation of the information component is approximately 18
cents (per period). Finally, the standard deviation of e

t
is calibrated to be 12.5

cents or one ‘tick’ (per period).
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Table 2
Best-execution strategies for acquiring a 100,000-share block of stock within 20 periods, for
a simulated realization of the information variable MX

t
N and price shock Me

t
N, assuming an initial

price P
0
"$50 and linear price-impact function hS

t
#cX

t
, where P

t
"P

t~1
#hS

t
#cX

t
#e

t
and

h"5]10~5, c"5.0, X
t
"oX

t~1
#g

t
, X

0
"0, p2g"0.001, p2e"(0.125)2, and o"0.50. Note: The

non-negativity restriction was not imposed and was not binding in this realization.

Performance summary

Metric Naive strategy
($1000s)

Optimal strategy
($1000s)

Improvement
(cents/share)

Expected cost 5231.0 5226.9 4.0849
Actual cost 5248.3 5252.4 !4.1143

Period P
t

S*
t

d
w,T~t

¼
t

d
x,T~t

X
t

cX
t

»
t
/$1000 Cost-to-go

1 49.927 2014 5000 !2986 !0.17 5226.9 5252.4
2 50.508 7927 5157 2770 0.15 5169.8 5151.8
3 50.779 6310 5003 1307 0.07 4771.9 4751.5
4 51.390 5070 4926 144 0.01 4436.7 4431.1
5 51.693 5547 4917 630 0.04 4210.4 4170.5
6 51.669 4227 4875 !648 !0.04 3915.5 3883.7
7 51.844 6208 4922 1287 0.08 3694.8 3665.3
8 51.767 1322 4823 !3501 !0.21 3331.2 3343.3
9 51.644 2794 5115 !2320 !0.14 3261.7 3274.9

10 51.890 5978 5325 653 0.04 3121.8 3130.6
11 51.901 2880 5260 !2380 !0.15 2790.2 2820.4
12 52.045 4950 5525 !575 !0.04 2645.1 2670.9
13 52.840 10082 5597 4486 0.30 2408.5 2413.3
14 53.639 10378 4956 5423 0.38 1888.3 1880.6
15 54.224 6980 4052 2928 0.22 1329.5 1323.9
16 54.367 3273 3466 !193 !0.02 948.1 945.4
17 54.237 1280 3515 !5534 !0.21 765.7 767.4
18 54.436 3643 4259 !617 !0.07 697.1 698.0
19 54.479 3979 4568 !588 !0.12 499.1 499.7
20 54.871 5156 5156 0 0.03 282.9 282.9

9The expected cost of the naive strategy under Eqs. (2.18) and (2.19) is given by

E
1C

T
+
t/1

P
t
SM /¹D"P

0
SM #hA

SM
¹B

2 ¹(¹#1)

2
#

SM
¹

cX
1

1!oA¹!

o!oT`1

1!o B .

For the first simulated realization the expected best-execution cost is
$5,251,395, which compares favorably with the expected cost of $5,255,185
for the naive strategy,9 implying an improvement of 3.8 cents/share on
average. However, since the information variable X

t
is stochastic, and since
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Table 3
Best-execution strategies for acquiring a 100,000-share block of stock within 20 periods, for
a simulated realization of the information variable MX

t
N and price shock Me

t
N, assuming an initial

price P
0
"$50 and linear price-impact function hS

t
#cX

t
, where P

t
"P

t~1
#hS

t
#cX

t
#e

t
and

h"5]10~5, c"5.0, X
t
"oX

t~1
#g

t
, X

0
"0, p2g"0.001, p2e"(0.125)2, and o"!0.50. Note:

The non-negativity restriction was not imposed and was not binding in this realization.

Performance summary

Metric Naive strategy
($1000s)

Optimal strategy
($1000s)

Improvement
(cents/share)

Expected cost 5256.3 5255.6 0.6
Actual cost 5267.2 5265.0 2.1

Period P
t

S*
t

d
x,T~t

¼
t

d
x,T~t

X
t

cX
t

»
t
/$1000 Cost-to-go

1 50.373 5586 5000 586 !0.09 5255.7 5265.0
2 50.467 6341 4969 1372 !0.21 4976.1 4983.6
3 51.081 3429 4893 !1464 0.23 4662.4 4663.6
4 51.140 5077 4979 98 !0.02 4512.0 4488.5
5 51.330 5246 4973 273 !0.04 4234.4 4228.8
6 51.828 3846 4955 !1109 0.17 3970.5 3959.6
7 52.099 4579 5034 !455 0.07 3788.7 3760.3
8 52.279 6033 5069 964 !0.15 3542.8 3521.7
9 52.674 4204 4989 !785 0.12 3231.4 3206.3

10 52.463 7732 5060 2672 !0.43 2999.4 2984.8
11 52.821 3652 4793 !1140 0.18 2583.3 2579.2
12 53.161 4839 4919 !80 0.01 2393.2 2386.3
13 53.332 5708 4929 779 !0.13 2136.5 2129.0
14 53.222 7144 4818 2326 !0.39 1821.8 1824.6
15 53.782 2006 4431 !2425 0.41 1442.7 1444.4
16 53.947 4886 4916 !30 0.01 1340.0 1336.5
17 53.929 6253 4923 1330 !0.24 1071.0 1072.9
18 54.296 3827 4480 !652 0.13 732.0 735.7
19 54.803 3450 4806 !1355 0.27 527.2 527.9
20 54.989 6161 6161 0 0.04 338.8 338.8

the best-execution strategy S*
t

is a function of X
t
, the actual execution cost of the

best-execution strategy will not typically be equal to its expected value. For this
realization, the actual cost of the best-execution strategy is $5,296,615 and the
actual cost of the naive strategy is $5,314,906, yielding an improvement of 18.3
cents/share.

Of course, while the expected best-execution cost is guaranteed to be lower
than the expected cost of all other feasible strategies, there is no assurance that
the best-execution strategy will always yield the lowest execution cost — Table 2
provides another simulated realization for which the actual cost of the naive
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strategy is lower than that of the best-execution strategy, despite the fact that the
best-execution strategy possesses a lower expected cost.

Tables 1 and 2 also demonstrate the adaptive nature of the best-execution
strategy. For example, Table 1 shows that in periods 7—10, unusually large
trades — over 8000 shares in each of these four periods — were executed (recall
that the naive strategy executes 5000 shares in each period). The columns
labelled ‘d

w,T~t
¼

t
’ and ‘d

x,T~t
X

t
’ report the breakdown of these trades into two

components, one due to the non-information-related motive for trade, and the
other due to the impact of the information contained in the state-variable X

t
for

the expected price. In periods 7—10, there were unusually large realizations for
X

t
implying higher expected prices in the future (since X

t
is positively autocor-

related), and this information component is responsible for the additional shares
executed. In period 12, an unusually low realization for X

t
occurs, yielding

a negative information component, hence the shares executed in that period is
lower than usual. Figs. 1 and 2 provide a clearer illustration of the adaptive
nature of the best-execution strategy.

Because information is positively serially correlated, positive realizations of
X

t
imply not only higher trading costs now, but higher trading costs for several

periods thereafter (on average), hence the best-execution strategy calls for larger-
than-usual trades during these high-cost periods, a somewhat counterintuitive
but optimal trading pattern. When the information component exhibits persist-
ence, trading ‘into’ expected price increases can be more economical than the
natural tendency to wait for a more favorable price.

Of course, the best-execution strategy depends intimately on the specific
dynamics of the information variables that enter the price-impact function. In
particular, if in our example o were negative, the opposite patterns would be
observed — a large positive realization of X

t
would portend negative realizations

of X
t
in the near future (on average), and this would cause trading to be shifted

from today into the future. Table 3 and Fig. 3 illustrate this intuition explicitly.
In contrast to the best-execution strategies of Tables 1 and 2, here a large
positive realization X

t
— in period 3, for example — reduces the trade size for that

period, and vice-versa for large negative realizations of X
t
. Instead of trading

into price rises, the fact that X
t
exhibits reversals implies that it is optimal to

trade out of them.

3. Linear-percentage temporary price impact

The closed-form best-execution strategies derived in Section 2 were primarily
illustrative examples, meant to introduce the overall approach and provide
some intuition for the determinants and properties of best-execution strategies
in a simple context. But from a practical perspective, these illustrative examples
have several important limitations.
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Fig. 1. Best-execution strategy and information-based component for Table 1.

In particular, the fact that, aside from price impact, prices P
t
are assumed to

follow arithmetic random walks in Eqs. (2.3) and (2.18) implies a positive
probability of negative prices. Also, the random walk specification implies that
both price impact and information have only permanent effects on prices, which
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Fig. 2. Best-execution strategy and information-based component for Table 2.

contradicts several recent empirical studies that suggest some combination of
permanent and temporary effects (see, for example, Barclay and Litzenberger,
1988; Barclay and Warner, 1993; Chan and Lakonishok, 1993, 1995; Hol-
thausen; Leftwich, and Mayers, 1987, 1990). And finally, because of the linearity
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Fig. 3. Best-execution strategy and information-based component for Table 3.

in Eqs. (2.3) and (2.18), the percentage price impact — as a percentage of the execu-
tion price — is a decreasing function of the price level, which is also counterfac-
tual (see, for example, Birinyi, 1995; Leinweber, 1993, 1994; Loeb, 1983).
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10 Indeed, the electronic crossing system POSIT — long recognized as a means of trading equities
without market impact — uses the average of the bid and offer prices in crossing its orders.

3.1. LPT law of motion

For these reasons, we propose a more plausible alternative to Eqs. (2.3) and
(2.18) which we call the ‘linear-percentage temporary’ (LPT) law of motion.
Specifically, let the execution price at time t be comprised of two components,
a no-impact price PI

t
, and the price impact *

t
:

P
t
"PI

t
#*

t
. (3.1)

The no-impact price may be viewed as the price which would prevail in the
absence of any market impact — a plausible and observable proxy for such
a price is the midpoint of the bid/offer spread (although it can be arbitrary as
long as it is unaffected by the trade size S

t
).10 The fact that PI

t
may be observable

is important for the empirical implementation of our best-execution strategy,
and is explored more fully in Bertsimas et al. (1998). For convenience, and to
ensure non-negative prices, we shall adopt a geometric Brownian motion
specification for the price dynamics of PI

t
:

PI
t
"PI

t~1
exp(Z

t
) (3.2)

where Z
t
is an IID normal random variable with mean k

z
and variance p2

z
.

The price impact *
t
captures the effect of trade size S

t
on the transaction

price (including the bid/offer spread), and we shall assume that as a percent-
age of the no-impact price PI

t
, it is a linear function of the trade size S

t
and

X
t
where, as before, X

t
proxies for private information or market conditions,

hence

*
t
"(hS

t
#cX

t
)PI

t
, (3.3)

X
t
"oX

t~1
#g

t
(3.4)

where g
t

is white noise with mean 0 and variance p2g . Once again we have
set X

t
to be an AR(1) process which allows us to capture varying degrees

of predictability in information or market conditions. The parameters h
and c measure the sensitivity of price impact to trade size and market con-
ditions.

This LPT specification of the law of motion for P
t

resolves a number of
problems facing the linear price impact specification of Section 2. First, PI

t
is

guaranteed to be non-negative, and P
t
is also guaranteed to be non-negative

under mild restrictions on *
t
.
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Second, by separating the transaction price P
t

into a no-impact com-
ponent PI

t
and the impact component *

t
, the price impact of a trade is tem-

porary, moving the current transaction price but having no effect on future
prices.

Third, the percentage price impact increases linearly with the trade size, which
is empirically more plausible than having absolute price impact increasing
linearly with trade size (see, for example, Loeb, 1983 (Table 2)).

Fourth, the LPT law of motion implies a natural decomposition of execution
costs, decoupling market-microstructure effects from price dynamics, which is
closely related to Pérold’s (1988) notion of implementation shortfall. To see this,
observe that under Eq. (3.1) the optimization problem is given by

Min
MSt

N

E
1C

T
+
t/1

P
t
S
tD"Min

MSt
N

E
1C

T
+
t/1

PI
t
(1#hS

t
#cX

t
)S

tD (3.5)

"Min
MSt

N GE1C
T
+
t/1

PI
t
S
tD#E

1C
T
+
t/1

*
t
S
tDH (3.6)

subject to the laws of motion (3.1)—(3.4) and (2.4). Because Eq. (3.1) implies that
price impact is a temporary phenomenon, affecting only the current trade price
P
t

and not the no-impact price level PI
t
, the objective function in Eq. (3.6)

separates into two terms. The first term is the no-impact cost of execution and
the second term is the total impact cost. This decomposition is precisely the one
proposed by Pérold (1988) in his definition of implementation shortfall, but now
applied to executing SM . In particular, the ‘paper’ return or execution cost is given
by the first term, the actual cost is given by the sum of the two terms, hence the
second term is the implementation shortfall in executing SM .

And finally, we shall see in the following section that the LPT specification
admits a closed-form solution in which the best-execution strategy is a simple
linear function of the state variables and the optimal-value function is quadratic.

3.2. The best-execution strategy

As in Section 2, we consider the unconstrained problem here and derive the
best-execution strategy via dynamic programming. The constrained case is
discussed in Section 6 — dynamic programming cannot easily accommodate
constraints because of its recursive nature, and we refer readers to some
approximation methods that may be more useful in the presence of constraints.
The best-execution problem is given by

Min
MSt

N

E
1C

T
+
t/1

P
t
S
tD (3.7)

subject to the LPT law of motion (3.1)—(3.4) and (2.4).
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By solving the usual Bellman equation recursively, we obtain the following
best-execution strategy and optimal-value function:

S*
T~k

"d
x, k

X
T~k

#d
w, k

¼
T~k

#d
1, k

, (3.8)

»
T~k

(PI
T~k~1

, X
T~k

, ¼
T~k

)"qPI
T~k~1

[a
k
#b

k
X

T~k
#c

k
X2

T~k

#d
k
X

T~k
¼

T~k
#e

k
¼

T~k
#f

k
¼2

T~k
] ,

(3.9)

where q, E[exp(Z
t
)]"exp(k

z
#p2/2) and Md

x, k
, d

w, k
, d

1, k
N and Ma

k
,2, f

k
N

are fixed coefficients given in the Appendix.
These expressions are qualitatively similar to those of the linear price

impact case: the best-execution strategy is a linear function of the two
state-variables X

t
and ¼

t
, but now with an added constant term, and the

optimal-value function is a quadratic function of X
t

and ¼
t
, but is now

proportional to PI .

3.3. A Monte Carlo analysis of best execution

To gauge the practical relevance of the best-execution strategy under the LPT
law of motion, we perform several Monte Carlo simulation experiments for
various combinations of parameter values. Specifically, we return to the numer-
ical example of Section 2.5 in which the goal is to minimize the expected
execution costs of a 100,000-share purchase over ¹"20 periods for a stock
currently trading at P

0
"$50, where the parameters of the LPT law of motion

are calibrated as:

k"0, p
z
"0.02/J13, h"5]10~7, g

t
&N(0, 1!o2),

c"0.0000, 0.0010, 0.0025, 0.0050, 0.0100,

o"!0.50, !0.25, 0.00, 0.25, 0.50.

The first two parameters imply that the continuously compounded return
log PI

t
/PI

t~1
has zero mean and a 2% daily standard deviation (recall that each

period is meant to be a 30 minute interval and there are 13 such intervals in
a typical trading day for the New York Stock Exchange, hence the divisor

J13 for the standard deviation). The parameter h is calibrated to yield a per-
centage price impact of 5% for a 100,000-share trade.

Observe that the variance of the error term g
t
for the information variable

X
t

is a function of the autocorrelation coefficient o — this specification
yields a unit variance for X

t
for any value of o. Such a normalization is always
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possible regardless of the natural units of X
t

(simply divide X
t

by its stan-
dard deviation), and is a convenient normalization since it implies that the
information-sensitivity parameter c is measured in units of standard deviation
of X

t
.

For each combination of parameter values (we considered five different values
for c and five different values for o, yielding 25 combinations), we simulated an
independent set of 50,000 sample paths of MPI

t
N and MX

t
N, implemented the

best-execution strategy (3.8) on each path, and recorded the realized best-
execution cost as well as the realized cost of the naive strategy SM /¹.

The results of these simulations are summarized in Table 4 which is organized
according to the values of c (rows) and o (columns). For example, the first three
rows of the table correspond to simulation results for c"0.0000 — the first row
reports the expected cost (in cents/share above the no-impact cost P

0
SM ) of either

the best execution strategy (the ‘S*’ column) or the naive strategy (the ‘SM /¹’
column), the second row reports the average realized cost of either strategy
(averaged over 50,000 replications), and the third row contains in parentheses
the standard errors of the average realized cost reported in the second row. The
five column-subpanels correspond to the five different values for o and the five
row-subpanels correspond to the five different values for c.

Consider the first row-subpanel and third column-subpanel, which corres-
ponds to the simulation for c"0.0000 and o"0.00. In this case, the expected
cost of best execution is 13.3058 cents/share above the no-impact cost P

0
SM ,

and is close but not identical to the expected cost of the naive strategy, 13.3098
(the ‘Diff’. column reports the difference of the two). This is not surpris-
ing because in this case the information variable X

t
plays no role in deter-

mining price impact, hence the best-execution strategy and the naive strategy
yield similar costs. However, the costs are not identical because the optimal
strategy does account for the drift in the stock price, and while these effects are
minimal for the c"0.0000 case, they are not zero. Observe that some slight
differences between the best-execution and naive strategies are observed in the
second row’s entries. Recall that these entries are the average realized execution
costs for the two strategies, and these averages are subject to sampling variation
(even for 50,000 replications). However, they are reasonably close to their
theoretical counterparts, and would be even closer for a larger number of
replications.

As we move down to the next row-subpanel, where c"0.0010, the differ-
ences between the best-execution and naive strategies become more pro-
nounced. For example, when o"!0.50 the best-execution strategy has an
expected cost of 12.8778 cents/share while the naive strategy’s expected cost
is still fixed at 13.3098 (the expected cost of the naive strategy does not depend
on c or o).

When c increases, implying that information X
t
has a larger effect on price

impact *
t
, the best-execution strategy performs even better. For c"0.0050 and
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11We follow the convention that all vectors are column vectors unless they are explicitly
transposed, and that boldface Roman letters denote vectors and matrices.

o"!0.50, the best-execution strategy outperforms the naive strategy by
10.7044 cents/share, with an expected execution cost of only 2.6054 cents/share.

When c"0.0100 the expected execution costs become negative — in this case,
there is so much value in exploiting X

t
that the best-execution strategy performs

better than the no-impact benchmark P
0
SM . Although this case is unrealistic, it

does highlight the important role that information can play in determining
execution costs.

Table 4 shows that under the LPT law of motion, the best-execution strategy
yields a significant improvement over the naive strategy, approximately
3—5 cents/share for empirically plausible parameter values, which amounts to
a 25—40% reduction in execution costs. Of course, these figures are highly
parameter specific and also depend intimately on the particular law of motion we
have chosen. Nevertheless these Monte Carlo results seem to suggest that in some
cases, best-execution strategies are quite effective in controlling execution costs.

4. The general formulation

In this section we describe the general approach to minimizing expected
execution costs. Despite the fact that closed-form solutions may not exist for
many cases of empirical interest, in almost all cases it is possible to obtain
numerical solutions to well-posed dynamic programming problems. We begin
with the same objective function:

Min
MSt

N

E
1C

T
+
t/1

P
t
S
tD

subject to the same constraint:

T
+
t/1

S
t
"SM

but with a more general law of motion:

P
t
"f

t
(P

t~1
, X

t
, S

t
, e

t
), (4.1)

X
t
"g

t
(X

t~1
, g

t
), (4.2)

¼
t
"¼

t~1
!S

t~1
, ¼

1
"SM , ¼

T`1
"0. (4.3)

The price-impact function is now implicitly contained in the law of motion (4.1)
for P

t
, which is a general nonlinear and possibly time-varying function f

t
of P

t~1
,

a state-vector X
t
, the control S

t
, and a random shock e

t
.11 Since X

t
is a vector of
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arbitrary dimension, it can accommodate multiple factors as in the ordered
probit model of Hausman et al. (1992), and the fact that g

t
( ) ) is a function of only

a single lag is not as restrictive as it may seem because additional lags may be
captured by increasing the dimension of X

t
, i.e., expansion of the states. More-

over, since g
t
( ) ) is not restricted to be linear, it is possible to capture complex

dynamic behavior of the state variables parsimoniously, e.g., threshold autoreg-
ressions, Markov switching processes, etc.

The Bellman equation and optimal trade at the end of the fixed horizon is
given by

»
T
(P

T~1
, X

T
, ¼

T
)"Min

ST

E
T
[P

T
S
T
]"E

T
[ f

T
(P

T~1
, X

T
, ¼

T
, e

T
)¼

T
],

(4.4)

S*
T
"¼

T
. (4.5)

In period ¹!1, the Bellman equation becomes

»
T~1

(P
T~2

, X
T~1

, ¼
T~1

)"Min
ST~1

E
T~1

[P
T~1

S
T~1

#»
T
(P

T~1
, X

T
, ¼

T
)]

(4.6)

"Min
ST~1

E
T~1

[ f
T~1

(P
T~2

, X
T~1

, S
T~1

, e
T~1

)S
T~1

#»
T
( f

T~1
( ) ), g

T
( ) ), ¼

T~1
!S

T~1
)] . (4.7)

Performing the one-period minimization in Eq. (4.7) — subject to any additional
constraints that might be present — yields the optimal trade S*

T~1
as a function of

the state variables P
T~2

, X
T~1

, and ¼
T~1

. Hence

S*
T~1

"h
T~1

(P
T~2

, X
T~1

, ¼
T~1

). (4.8)

Proceeding recursively in this fashion, the optimal-value function and optimal
trade at time ¹!k is then

»
T~k

(P
T~k~1

, X
T~k

, ¼
T~k

)"Min
St

E
T~k

[P
T~k

S
T~k

#»
T~k`1

(P
T~k

, X
T~k`1

, ¼
T~k`1

)] (4.9)
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, S
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( f
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T~k`1

( ) ), ¼
T~k
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T~k

)], (4.10)

S*
T~k

"h
T~k

(P
T~k~1

, X
T~k

, ¼
T~k

) (4.11)
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and when we reach the starting point of the trading horizon:

»
1
(P

0
, X

1
, ¼

1
)"Min

S1

E
1
[P

1
S
1
#»

2
(P

1
, X

2
, ¼

2
)] (4.12)

"Min
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, X

1
, S
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, e
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( ) ), g

2
( ) ), ¼
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)] (4.13)

S*
1
"h

1
(P

0
, X

1
, ¼

1
), ¼

1
"SM (4.14)

the initial conditions will enable us to obtain the entire sequence of optimal
trades as functions of the state variables, which yields the best-execution strat-
egy:

S*
1
"h

1
(P

0
, X

1
, SM ),

S*
2
"h

2
(P

1
, X

2
, SM !S*

1
),

F

S*
k
"h

kAPk~1
, X

k
, SM !

k~1
+
t/1

S*
t B,

F

S*
T~1

"h
T~1APT~2

, X
T~1

, SM !
T~1
+
t/1

S*
t B,

S*
T
"SM !

T~1
+
t/1

S*
t
. (4.15)

Moreover, the optimal-value function at the start of the trading horizon,
»

1
(P

0
, X

1
, SM ), is an estimate of the best-execution costs, and depends only on the

initial price, the initial state-vector, and the total number of shares to be traded.
Of course, for certain specifications of the law of motion, computing the

optimal control explicitly may be intractable because a closed-form expression
for the optimal-value function »

T~k`1
(2) is not available (see Eq. (4.10)).

Therefore, in the next two sections we propose alternatives that address the
computational challenges of determining best execution.

4.1. A discretization approach

Perhaps the most common method for solving dynamic programming prob-
lems numerically is to discretize the state space and control space and perform
the dynamic optimization via grid search at each stage.

In particular, we discretize the possible prices P
t

as a multiple of some
constant, d. A natural choice for d is 1

8
since the minimum variation of prices on

most US stocks is $0.125. Suppose that the horizon ¹ is such that the range of
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possible prices is concentrated on a relatively small interval and let K be the
number of possible values in that interval. Let the trade sizes S

t
also be discrete,

varying in fixed increments of s shares — an obvious choice for s is 100 shares
since most institutional trades are round lots. This implies that ¼

t
, the remain-

ing shares to be executed at time t, is also denominated in multiples of s. Let
J"SM /s denote the number of round lots that need to be executed initially.
Finally, let the information vector X

t
take on a finite number N of possible

values.
Under these assumptions, at each time t the optimal-value function

»
t
(P

t~1
, X

t
, ¼

t
) must be evaluated numerically for KJN possible values. Note

that these values need to be stored only temporarily, as they will be used in step
t!1 of the dynamic programming algorithm, but not at step t!2 (at this step
the values »

t~1
(P

t~2
, X

t~1
, ¼

t~1
) are needed). As a result, the total memory

requirements are of the order O(KJN).
In order to develop some intuition for the computational requirements of the

discretization, consider the following example. Suppose that 100,000 shares,
currently trading at $50, must be executed over the next 20 periods. We assume
that within this time period, the price will be within $45 and $55, meaning that
there are K"80 possible prices to consider (multiples of 1

8
). If we choose s"100

then J"1000. We also discretize the information variable into N"10 states.
Then at each step we need to compute the optimal-value function for
KJN"800,000 values of the state and control variables. With 20 periods, this
implies a total of 16 million evaluations of the optimal-value function.

Given the speed of today’s workstations, such computations can be per-
formed in seconds. For example, if we assume that the computation of each
optimal-value function »

t
(P

t~1
, X

t
, ¼

t
) takes 10~6 seconds, then the total com-

putation will be 16 seconds.
Of course, if we require a more refined discretization, the computational

requirements increase dramatically. For example, if we allow trade size to vary
in increments of 1 share instead of 100 shares, and if the information variable
takes on 100 discrete values instead of 10, the computational demands increase
by a factor of 1000.

4.2. Approximate dynamic programming

For certain applications — stocks with high volatility, longer horizons, or
a large number of information variables — the discretization approach may be
computationally infeasible. In such cases, we propose a recently developed
technique known as ‘approximate dynamic programming’ in which the opti-
mal-value function is approximated at each stage by a quadratic function (see,
for example, Bertsekas (1995)). In contrast to the discretization method which is
numerical (but exact), approximate dynamic programming always yields an
analytical (but approximate) solution.
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Specifically, let Y
t
"(P

t~1
, X

t
, ¼

t
) denote the state vector at time t. Beginning

at the end, we must first compute »
T
(Y

T
) (note that this requires no minimiz-

ation). We approximate this function with »K
T
(Y

T
) where

»K
T
(Y

T
),Y @

T
Q

T
Y

T
#b@

T
Y

T
(4.16)

and the matrix Q
T

and vector b
T

are selected to minimize:

Py
T

(»
T
(Y

T
)!»K

T
(Y

T
))2 dY

T
. (4.17)

This is a least-squares problem which can always be solved in closed form. At
step ¹!k we apply the Bellman recursion but with one important difference:
we use »K

T~k`1
(Y

T~k`1
) in place of »

T~k`1
(Y

T~k`1
) for the minimization:

»
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!S
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This minimization can be easily performed because the approximating optimal-
value function is quadratic. After computing »

T~k
(Y

T~k
), again we approximate

this function with a quadratic function:

»K
T~k

(Y
T~k

)"Y@
T~k

Q
T~k

Y
T~k

#b@
T~k

Y
T~k

(4.19)

where, as before, the matrix Q
T~k

and the vector b
T~k

are selected to minimize:

Py
T~k

(»
T~k

(Y
T~k

)!»K
T
(Y

T~k
))2 dY

T~k
. (4.20)

There are several compelling reasons for using a quadratic approximation to
»

T~k
(Y

T~k
). First, in all of cases we have considered in Sections 2 and 3, the

optimal-value functions are quadratic, hence in these cases approximate dy-
namic programming is exact. Second, a quadratic approximation can capture
a variety of nonlinearities parsimoniously. For example, if the vector of informa-
tion variables contains three scalars — quite a challenge for the discretization
approach — this implies that »K

T~k
(Y

T~k
) is uniquely determined by the (5]5)-

matrix Q
t

and the (5]1)-vector b
t
. Finally, the minimization that must be

performed at each stage of the dynamic program is considerably more tractable
when the optimal-value function is quadratic.

Of course, an unresolved issue is the magnitude of the approximation error.
Because approximate dynamic programming is still in its infancy, very little is
known about the magnitude of the approximation error. However, some pre-
liminary studies seem to indicate that the approximations are quite good — see
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Bertsekas (1995, Chapter 6) and the accompanying references for further dis-
cussion.

5. Best execution for portfolios

In the previous sections we have focused our attention on the best-execution
strategies for a single stock, but in typical applications institutional investors
trade many stocks at once, i.e., ‘list’ trading. In this section we extend our
approach to the multivariate setting in which a portfolio of n stocks must be
executed within ¹ periods.

The portfolio case contains several interesting features not captured by our
single-stock analysis. Perhaps the most important feature is the ability to
capture cross-stock relations such as the cross-autocorrelations reported in Lo
and MacKinlay (1990). In particular, one might expect price movements in one
stock to induce similar movements in the price of another, either because of
common factors driving both, or because of linked trading strategies, e.g., pairs
trading, index arbitrage, etc. In such cases, the price impact of trading a portfolio
may be larger than the sum of the price impact of trading the individual stocks
separately. Alternatively, if some stocks are negatively correlated (perhaps
because of portfolio substitution effects), or if the portfolio to be executed
includes both purchases and sales, then the portfolio execution cost may be
lower than the sum of the individual stocks’ execution costs due to a kind of
diversification effect in which the trades of one stock lower the price impact of
trades in another. Whether execution costs are magnified or mollified in the
portfolio case is, of course, an empirical issue that turns on the law of motion for
the vector of prices and state variables. In either case, it is clear that the portfolio
setting is considerably more complex than the single-stock case.

Fortunately, much of the analysis in Sections 2 and 3 — including closed-form
solutions in the linear price impact and LPT law of motion cases — extends to the
portfolio case with only minor changes in notation. Of course, for more complex
laws of motion, especially those which require numerical solutions, the portfolio
problem can quickly become computationally intractable. However, in such cases
the approximate dynamic programming approach we discuss in Section 4.2 would
be a suitable alternative — see Bertsimas et al. (1998) for a more detailed analysis.

Let S1 ,[SM
1 2 SM

n
]@ denote the vector of stocks to be purchased or sold within

¹ periods, where a negative entry indicates a sale and a positive entry indicates
a purchase. Denote by P

t
, S

t
, and W

t
the n-vector of prices, shares executed, and

remaining shares to be executed, respectively, at time t. Then the best-execution
problem for the portfolio S1 may be expressed compactly as

Min
MSt

N

E
1C

T
+
t/1

P@
t
S
tD (5.1)
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Subject to

T
+
t/1

S
t
"S1 , (5.2)

W
t
"W

t~1
!S

t
(5.3)

and the law of motion for P
t
and accompanying information variables X

t
. In the

next two sections, we present analytical solutions to Eq. (5.1) which illustrate the
complexities (and opportunities) that the portfolio case has to offer.

5.1. The multivariate linear price impact case

Suppose the price vector P
t
follows the multivariate version of Eq. (2.18)

P
t
"P

t~1
#AS

t
#BX

t
#e

t
(5.4)

where A is a positive definite (n]n)-matrix, B is an arbitrary (n]m)-matrix, X
t
is

an m-vector of information variables, and e
t
is n-vector white noise with mean

0 and covariance matrix R e. As before, we assume that X
t
follows a stationary

AR(1) process. Hence

X
t
"CX

t~1
#g

t
(5.5)

where C is an (m]m)-matrix with eigenvalues all less than unity in modulus, and
g
t
is m-vector white noise with mean 0, covariance matrix Rg, and which is

independent of e
t
.

Under the law of motion (5.4)—(5.5), the portfolio problem (5.1)—(5.3) can be
solved via Bellman’s equation, which yields the following best-execution strat-
egy and optimal-value function:

S*
T~k

"(I!1
2

A~1
k~1

A@)W
T~k

#1
2

A~1
k~1

B@
k~1

CX
T~k

, (5.6)

»
T~k

(P
T~k~1

, X
T~k

, W
T~k

)"P @
T~k~1

W
T~k

#W @
T~k

A
k
W

T~k

#X @
T~k

B
k
W

T~k
#X @

T~k
C

k
X

T~k
#d

k
(5.7)

for k"0, 1,2, ¹!1, where

A
k
"A!1

4
AA~1

k~1
A@, A

0
"A,

B
k
"1

2
C@B

k~1
(A@

k~1
)~1A@#B@, B

0
"B@,

C
k
"C@C

k~1
C!1

4
C@B

k~1
(A@

k~1
)~1B

k~1
C, C

0
"0,

d
k
"d

k~1
#E[g@

T~k
C

k~1
g
T~k

], d
0
"0. (5.8)

Observe that Eq. (5.6) is qualitatively similar to the single-stock best-execution
strategy — it is linear in the two state variables W

T~k
and X

T~k
. However, there is
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one key difference: in the portfolio case, unless the matrix A is diagonal, the
best-execution strategy for one stock will depend on the parameters and state
variables of all the other stocks. To see this, observe that the matrix coefficient
(I!1

2
A~1

k~1
A@) multiplying W

T~k
in Eq. (5.6) will generally not be a diagonal

matrix unless A is itself diagonal. Of course, if A is diagonal this means that
trading in one stock has no price impact on any other stocks (see Eq. (5.4)),
hence the portfolio problem essentially reduces to n independent single-stock
problems.

For this reason, whether or not the portfolio best execution cost is greater or
less than the sum of the individual stocks’ best execution costs depends wholly
on the values in A and is an empirical issue which is examined in Bertsimas et al.
(1998).

5.2. The multivariate LPT case

The multivariate version of the linear-percentage temporary price impact case
is given by the following law of motion:

P
t
"P3

t
#D

t
, (5.9)

P3
t
"exp(Z

t
)P3

t~1
, vec(Z

t
)&N(l

z
, R

z
), (5.10)

D
t
"diag[P3

t
](AS

t
#BX

t
), (5.11)

X
t
"CX

t~1
#g

t
, g

t
&WN(0

z
, Rg), (5.12)

where g
t
is vector white noise with mean 0 and covariance matrix Rg, the vec( ) ) is

the vectorization operator (which maps its matrix argument into a column
vector composed of stacked columns of the matrix), and diag( ) ) is the diagonal-
ization operator (which maps its vector argument into a diagonal matrix with
the vector as the diagonal). The (n]n)-matrix A is assumed to be positive
definite, B is an arbitrary (n]m)-matrix, and C is an (m]m)-matrix with
eigenvalues less than unity in modulus.

The specification (5.9) has the same motivation as the single-stock case (3.1) in
which price impact is assumed to have only a temporary effect on market prices.
The form of the price impact function D

t
in Eq. (5.11) is also similar to that of the

single-stock case (3.3), except now the percentage price impact function for each
stock i, *

it
/P

it
is a linear function AS

t
of the trade sizes of all n stocks, not just of

S
it
. As in Section 5.1, if A is diagonal the portfolio problem reduces to n indepen-

dent single-stock problems.
Under the law of motion (5.9)—(5.12), the portfolio problem (5.1)—(5.3) can

be solved via Bellman’s equation, which yields the following best-execution
strategy:

S*
T~k

"L
k
W

T~k
#G

k
X

T~k
#c

k
(5.13)
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12We omit these formulae for the sake of brevity — they offer no particular insights or intuition
and would lengthen this paper by several pages. Interested readers may contact the authors for the
formulae.

13Other common constraints include sector-balance constraints, turnover constraints, tax-moti-
vated constraints, and, in the portfolio case, dollar-balance constraints. This last type of constraint
— the dollar-value of the portfolio at the end of trading lies within some fixed interval — is one of the
most difficult to impose because the constraint is a function of the entire vector of prices which is
stochastic. See Bertsimas and Lo (1998) for a probabilistic method of imposing such constraints.

where the fixed parameters L
k
, G

k
and c

k
are calculated recursively.12 As in the

single-stock case (3.8), the best-execution strategy is linear in the two state
variables W

T~k
and X

T~k
and has a constant term c

k
as well.

6. Imposing constraints

In most practical applications, there will be constraints on the kind of
execution strategies that institutional investors can follow. For example, if
a block of shares is to be purchased within ¹ periods, it is very difficult to justify
selling the stock during these ¹ periods even if such sales are warranted by the
best-execution strategy.13 Therefore, in practice buy-programs (sell-programs)
will almost always be accompanied by non-negativity (non-positivity) con-
straints.

Such constraints are often binding for best-execution strategies, particularly
when the information variable has a large effect on price impact. For example,
Table 5 reports the frequency and magnitude of sells generated by the best-
execution strategy for the buy-program in Section 3.3 under the LPT law of
motion. The last row shows that when c"0.0100, i.e., when information has an
enormous effect on price impact — over 25% of the best-execution trades are
sells, and the average total sell size is between 25% and 30% of the total number
of shares SM to be executed.

Of course, if we seek numerical solutions to the best-execution problem as
discussed in Section 4.1, non-negativity constraints can be imposed almost
trivially. Moreover, approximations to dynamic optimization such as the static
optimization approach of Bertsimas and Lo (1998) may accommodate con-
straints more readily than a recursive algorithm like dynamic programming.
Section 6.1 contains a more detailed discussion of the difficulties of imposing
non-negativity constraints in our context. In Section 6.2 we present a rare
example in which a closed-form best-execution strategy is available even when
non-negativity constraints are imposed. Although certainly not generic, this
example provides some insight into the nature of such constraints and their
effect on best execution.
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6.1. Why imposing constraints is difficult

Although there are well-known techniques for performing constrained optim-
ization in a static setting, corresponding techniques for dynamic optimization
problems have not yet been developed. To see why this is such a difficult task,
consider the simplest case of imposing non-negativity restrictions S

t
*0 in the

linear price-impact model of Section 2.1. Without any constraints, the optimal-
value function »

T~k
is quadratic in the state variable ¼

T~k
, hence the Bellman

equation can be easily solved in closed form (see Eq. (2.21)). But if non-
negativity constraints S

t
*0 are imposed, »

T~k
becomes a piecewise-quadratic

function, with 3k pieces.
To see how this arises, observe that for k"0 the optimal control is S*

T
"¼

T
and »

T
is a quadratic function of ¼

T
. In the next stage, k"1, we calculate the

optimal control S*
T~1

by minimizing a quadratic function of S
T~1

subject to the
constraints 0)S

T~1
)¼

T~1
. The solution is given by

S*
T~1

"G
0 if a

1
¼

T~1
#b

1
X

T~1
(0,

a
1
¼

T~1
#b

1
X

T~1
if 0(a

1
¼

T~1
#b

1
X

T~1
(¼

T~1
,

¼
T~1

if a
1
¼

T~1
#b

1
X

T~1
'¼

T~1
.

(6.1)

This partitions the range of ¼
T~1

into three intervals, over each interval
there is a different optimal control S*

T~1
, and within each interval »

T~1
is a continuous quadratic function of ¼

T~1
. At the next stage, k"2, each

of these three intervals is partitioned into another three intervals, each with
a different optimal control S*

T~2
, and so on, the number of intervals growing

exponentially with k. Therefore, even in this simple case, calculating S*
T~k

and
»

T~k
exactly is only feasible for a very small number of periods ¹ (for example,

when ¹"20 there are 320"3,486,784,401 intervals at the last stage of the
dynamic program).

6.2. A closed-form solution with non-negativity constraints

To develop further intuition for how non-negativity constraints affect best-
execution strategies, in this section we present a specification of the law of
motion under which a closed-form best-execution strategy is available under
non-negativity constraints.

Consider the single-stock case of Section 2 in which some information
X

t
affects price impact. However, in contrast to the linear price impact

specification of Section 2.4, suppose that X
t
affects price impact in a multi-

plicative fashion, so that the price impact of a trade of S
t

shares is hX
t
S
t
.
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Instead of increasing or decreasing the price level, X
t

now affects the price
elasticity. Let the price and information dynamics be given by the following law
of motion:

P
t
"P

t~1
#hX

t
S
t
#e

t
(6.2)

log X
t
"log X

t~1
#g

t
(6.3)

where e
t
and g

t
are independent white noise processes with mean 0 and variances

p2e and p2g , respectively. The price dynamics (6.2) imply that price impact is
permanent, and the information dynamics (6.3) is an AR(1) in the logarithm of
X

t
to ensure that X

t
is always positive so that the price elasticity hX

t
cannot

change sign (if it does, the optimization problem is no longer well-defined
because the objective function may not be convex).

Under the law of motion (6.2)—(6.3) and (2.4), and with non-negativity
constraints S

t
*0, the investor’s minimization problem is well-posed. Once

again, we apply Bellman’s equation recursively to characterize the best-
execution strategy, this time performing a constrained minimization at each
stage:

»
T~k

(P
T~k~1

, X
T~k

, ¼
T~k

)" Min
0xST~kxWT~k

E
T~k

[P
T~k

S
T~k

#»
T~k`1

(P
T~k

, X
T~k`1

, ¼
T~k`1

)].

(6.4)

It can be shown that the best-execution strategy and optimal-value function is
given by

S*
T~k

"a
k
¼

T~k
, (6.5)

»
T~k

(P
T~k~1

, X
T~k

, ¼
T~k

)"P
T~k~1

¼
T~k

#hb
k
X

T~k
¼2

T~k
(6.6)

for k"¹!1,2, 1 where the constants (a
k
, b

k
) are computed recursively as

follows:

(a
k
, b

k
)"GA

1!
1

2ib
k~1

, 1!
1

4ib
k~1
B if b

k~1
*

1

2i

(0, ib
k~1

) if b
k~1

(

1

2i

(6.7)

for k"1,2, ¹!1, where i,E[exp(g
t
)]"E[X

t
/X

t~1
] is the gross ex-

pected growth rate of X
t
, and (a

0
, b

0
)"(1, 1). By forward substitution using the

law of motion, explicit expressions for the optimal controls S*
1
,2, S*

T
may be
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obtained as

S*
1
"a

T~1
SM ,

S*
2
"a

T~2
(1!a

T~1
)SM ,

S*
3
"a

T~3
(1!a

T~2
!a

T~1
)SM ,

F

S*
k
"a

T~k
(1!a

T~k~1
!2!a

T~1
)SM ,

F

S*
T~1

"a
1
(1!a

2
!2!a

T~1
)SM ,

S*
T
"SM !

T~1
+
t/1

S*
t
. (6.8)

From Eqs. (6.5) and (6.7), a clear structure for the best-execution strategy
emerges. If i lies in the interval (0, 1

2
], so that the expected growth rate of the

price elasticity hX
t

is between !100% and !50%, then it follows from
Eq. (6.7) that a

0
"1 and a

1
"a

2
"2"a

T~1
"0. This implies that the best-

execution strategy is to trade nothing in the first ¹!1 periods and trade
everything in the last period. With such a negative expected growth rate for the
price elasticity, it pays to wait until the very end before trading.

If i lies in the interval (1
2
, 3
4
], implying an expected growth rate between

!50% and !25%, then a
0
"1, a

1
"1!1/2i, and a

2
"2"a

T~1
"0. In

this case, the best-execution strategy is to trade nothing in the first ¹!2
periods, trade a fraction 1!1/2i of SM in the second-to-last period ¹!1, and all
of the remaining shares in period ¹.

As i increases, increasing the opportunity cost of delayed trades, the best-
execution strategy begins its trading sooner and sooner. When i"1, implying
a zero expected growth rate for the price elasticity, Eqs. (6.5) and (6.7) show that
the best-execution strategy reduces to that of the linear price impact model with
no information (see Section 2.3): S*

1
"2"S*

T
"SM /¹. When the expected

growth of X
t
is 0, the law of motion for the multiplicative case has virtually

identical implications for expected execution costs as the linear price impact
case, hence the best-execution strategy is the same.

When i exceeds unity, the best-execution strategy tilts trades towards the
earlier periods for obvious reasons, and as i increases without bound,
a
T~1

approaches unity from below, and in the limit the best-execution strategy
is to trade the entire block SM in the first period.

7. Limitations, extensions, and open questions

We have argued above that our general approach to defining and implemen-
ting best execution is quite general indeed, nevertheless, there are several
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important limitations, extensions, open research questions that bear further
discussion.

7.1. Order types and optimal order-submission strategies

In modelling the price impact of a single trade as a simple function of the
number of shares traded, we have subsumed the choice of order type — limit
versus market order — the investor will use to execute the trade. This choice is no
simple matter, and requires a certain sophistication as well. Market orders are
executed immediately but incur substantial price impact. Limit orders incur no
price impact but may not be executed immediately, if at all. Therefore, the
trade-off between limit and market orders is a subtle one that generates yet
another dynamic optimization problem, one that is clearly beyond the scope of
this paper but which has been the subject of several recent studies (see, for
example, Angel, 1994; Harris and Hasbrouck, 1992; Harris, 1994; Kumar and
Seppi, 1993; and Lo et al. (1998)). In particular, this optimization problem
requires an explicit measure of the investor’s need for immediacy or ‘urgency’
which can then be balanced against the price impact of a market order.

Of course, a mathematically more complete specification of the best-execution
optimization problem would include order type as a control variable and
urgency in the objective function. However, without some sort of simplification
or approximation, this problem is computationally intractable. The best-execu-
tion strategies proposed in this paper can be viewed as a second-best solution:
first optimize the number of shares to be traded within each 30 minute interval,
and then perform a second optimization within this 30 minute interval to decide
the proportion of market and limit orders to use. Although such a two-stage
optimization will almost certainly not coincide with the globally optimal execu-
tion strategy, it may be an adequate approximation and will be the subject of
future investigations.

7.2. The risks of best execution

As Table 2 clearly illustrates, the best-execution strategy minimizes expected
execution costs, not actual execution costs. Of course, without perfect foresight,
minimizing actual execution costs is impossible. But in the same way that
investors evaluate the risks surrounding a given expected return, we can also
evaluate the uncertainty around expected best-execution costs.

There are at least four sources of uncertainty surrounding the expected
best-execution costs »

1
: (1) the realized cost is typically different from the

expected cost, and although over time and trades the average of the former
should equal the latter, this may be small comfort if the ‘tracking errors’ are wild
and unpredictable; (2) the expected cost »

1
is itself a function of random initial

conditions (X
1
in particular), and will vary from program to program even if the
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same block of shares were to be executed each time and at the same initial price;
(3) estimation errors of the parameter estimates for the law of motion for P

t
and

X
t
will be propagated recursively through Bellman’s equation to »

1
, so that

even small uncertainties in the parameter values may lead to large uncertainty in
the expected execution cost; and (4) the law of motion for P

t
and X

t
may suffer

from the kind of non-stationarities and time-variation that plague all economic
models — factors that affect price impact and price dynamics last year need not
be relevant next year, and vice versa.

The third and fourth sources of uncertainty — parameter estimation errors
and parameter instabilities — are problems that affect all quantitative models in
financial economics. Moreover, there are no simple solutions to these problems
and their impact must be assessed on a case-by-case basis. Therefore, we can only
alert readers to these potentially important issues and leave them aside for now.

To address the first and second sources of uncertainty, we simulate 50,000
sample paths of MP

t
, X

t
N for the LPT specification of Section 3.1 and for each

sample path, we calculate the expected best-execution cost »
1

and the actual
cost that the best-execution strategy generated. Moreover, we can decompose
both the expected and actual cost into two components according to Eq. (3.6):
a ‘fundamental value’ component (the first term of (3.6)) and a ‘price-impact’
component (the second term of (3.6)). The standard deviation of these two
components over the 50,000 replications measures the risk of best-execution due
to fundamentals and price-impact.

Table 6 presents the Monte Carlo simulation results for various combina-
tions of parameter values for c and o, and where the other parameter values are
calibrated as in Table 4. The two rows that correspond to each value of
c describe the behavior of the fundamental component (the first row) and the
price-impact component (the second row). The ‘Expected Cost’ entry is the
theoretical best-execution cost, and the ‘Simulation Mean’ and ‘Simulation Std.
Dev.’ is the mean and standard deviation, respectively, of the actual cost of the
best-execution strategy across the 50,000 replications.

The entries in Table 6 show that under the LPT specification there is con-
siderable uncertainty in execution costs, but that almost all of the uncertainty is
due to variability in fundamentals (the first term of Eq. (3.6)), not price impact.
For example, in the (c, o)"(0.0000, 0.00) case, the standard deviation of the
fundamental component is 73.6114 cents/share, but the standard deviation of
the price-impact component is only 0.1789 cents/share. Of course, the standard
deviation of the price-impact component increases as the information compon-
ent X

t
becomes more important, i.e., as c increases. For example, in the extreme

case (c, o)"(0.0050, 0.25), the mean of the price-impact component is 3.8326
cents/share but the standard deviation is 7.7815. This is not surprising because
as c increases, information plays a more important role in the best-excution
strategy (and in the price-impact component specifically), hence the variability of
information will manifest itself in the variability of the price-impact component.
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14 In particular, we have derived approximate results for a mean-variance objective function in the
linear additive case of Section 2.4

But even in this case, the standard deviation of the price-impact component is
still an order of magnitude smaller than the standard deviation of the funda-
mental component.

These simulations suggest that while the overall risk of the best-execution
strategy is substantial, virtually all of it is due to the variability of prices, not
to the variability of price impact. This implies that most trading strategies,
regardless of their optimality for execution costs, will exhibit similar risks. While
risk preferences are crucial for determining optimal portfolios (see Section 7.3),
they may not be as important for the narrower goal of minimizing execution costs.

7.3. Other objective functions

Expected execution costs is only one of many possible objective functions that
investors may wish to minimize. In particular, a natural alternative to expected
costs is an objective function that also incorporates some measure of risk, e.g.,
variance of costs and other higher moments. Investors may be willing to accept
a higher expected cost of execution if doing so will ensure a much lower variance
in the cost of execution. Using the first moment as the objective function implicitly
assumes that the investor is risk neutral with respect to execution costs, and while
this may be a plausible assumption for broker/dealers and other institutional
block-equity traders, we might expect such traders to charge some sort of
premium above minimum expected execution costs due to adverse selection and
other strategic considerations (see, for example, Glosten and Milgrom, 1985).

While the inclusion of higher moments into the objective function is conceptually
straightforward, analytical solutions for the best-execution strategy are not avail-
able except in a few very specialized cases.14 Nevertheless, numerical solutions are
readily obtained in these cases, hence the risk of best execution can be managed in
much the same way that static portfolio theory balances risk and expected return.

However, this raises the larger issue of what the proper objective function
should be. Specifically, while we have focused exclusively on execution costs in
this paper, investors are ultimately interested in maximizing the expected utility
of their wealth. Therefore, the most natural approach to execution costs is to
maximize the investor’s expected utility of wealth subject to the law of motion
for P

t
and X

t
, i.e., combine the portfolio optimization problem with the execu-

tion problem. This is the approach taken by Davis and Norman (1990), Gross-
man and Vila (1992), Heaton and Lucas (1996), Magill and Constantinides
(1976), Vayanos (1995), and Vayanos and Vila (1995).

There is no doubt that such an approach is the ‘right’ one — our implicit two-stage
optimization cannot yield a better outcome (in terms of the investor’s expected
utility) than a combined optimization. But as with many financial optimization

D. Bertsimas, A.W. Lo/Journal of Financial Markets 1 (1998) 1—50 41



problems, the maximization of expected utility with transactions costs is analytically
and computationally intractable in all but the most stylized examples. And al-
though such examples do provide important insights into the economics of transac-
tions costs, they have little to say about minimizing transactions costs in practice.

7.4. Partial versus general equilibrium

Our analysis assumes that the law of motion for P
t

and X
t

is given. In
particular, the parameters and functional form of the law of motion are unaffected
by the investor’s trades. Although this partial-equilibrium approach may be
appropriate in some circumstances, one can imagine other circumstances when an
equilibrium model is more appropriate. For example, if a small number of large
investors dominate the market, then strategic considerations become more signifi-
cant. In such cases, the law of motion for P

t
and X

t
will be directly influenced by

each of the large investors’ trades, hence the best-execution strategy will depend
on an infinite regress of expectations of other investors’ expectations. These
strategic interactions and their equilibrium implications have been explored in
some simple contexts by Jarrow (1992), Kyle (1985, 1989), and Vayanos (1995).

Despite the potential importance of equilibrium considerations, our approach
is still appropriate even in the presence of strategic behavior if the law of motion
is properly calibrated and the environment relatively stable. In particular, if the
law of motion is estimated from historical data (see, for example, Bertsimas et al.,
1998), then it represents a ‘reduced-form’ description of price impact and price
dynamics, which includes the effects of strategic interactions among large
investors. Of course, the standard criticism of reduced-form models is also
relevant in this context: structural changes cannot be anticipated by reduced-
form models. Nevertheless, given the level of anonymity imposed by current
market structure, it is difficult to see how strategic interactions can be easily
incorporated into the best-execution problem. However, this is an important
open question that deserves further investigation.

8. Conclusion

With the advent of more accurate models and measures of execution costs,
and given the dramatic increase in institutional trading in recent years, the
optimal control of execution costs has never been more important. We have
argued that this is a dynamic optimization problem because trading takes time,
the demand for financial securities is not perfectly elastic, and the price impact of
current trades, even small trades, can affect the course of future prices.

Using stochastic dynamic programming, we have derived trading strategies
that minimize the expected cost of execution — called best-execution strategies
— which adapt to changing market conditions and price changes in an optimal
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fashion. We have shown that the common approach of breaking up a large
trade into a number of smaller trades of equal size is optimal only in one very
special case: when price impact is linear in the trade size, permanent in its affect on
future prices, and when prices follow an arithmetic random walk. For empirically
more plausible price dynamics and price-impact functions, the best-execution
strategy varies through time as a function of several state variables which measure
market conditions and the remaining shares to be executed. Monte Carlo
simulations indicate that for at least one specification of price dynamics and
price impact, on average the execution cost of the best-execution strategy is 25%
to 40% less than that of the naive strategy of trading in equal-size lots.

A by-product of the dynamic programming algorithm is the expected cost of
best-execution, which is given by the optimal-value function. This may be
a useful benchmark for pricing principal-bid and negotiated-block transactions
since dealers engaging in such ‘basket’ trades will be pricing their bids with an
eye towards trading out of these positions as quickly and as cheaply as possible,
i.e., they will seek best-execution strategies for the basket.

We have extended our analysis to the portfolio case in which trades in several
securities must be executed simultaneously. The results are qualitatively similar to
the single-security case, but they differ in one important respect: the portfolio case
captures potentially important cross-effects between prices and over time, and
these cross-effects are optimally exploited by the portfolio best-execution strategy.
In particular, unless the collection of securities are independent in terms of price
impact — trades in one security have no impact on other securities’ prices — the
components of the best-execution strategy for the portfolio will not, in general,
be identical to the best-execution strategy for individual securities. Whether or
not the portfolio execution costs are greater or less than the sum of individual
securities’ execution costs depends of course on the signs and magnitudes of the
cross-effects, a subject of ongoing investigation in Bertsimas et al. (1998).

We have also discussed extensions of our results to more general price-impact
functions and price dynamics, and to the case with constraints. In many cases
numerical solutions are available, but in some cases — those with many con-
straints — alternatives to dynamic programming must be considered.

Of course, the challenging problem of building transactions costs directly into
optimal consumption/investment decisions and dynamic equilibrium models
still remains. Our more modest goal in this paper is to minimize expected
execution costs, a far simpler problem, but one which has considerable relevance
and for which we can provide a fairly complete set of solutions.
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Appendix A.

In this appendix we derive the best-execution strategies for the linear and
linear-percentage price-impact functions of Sections 2 and 3.

A.1. Linear price impact

We show that Eqs. (2.20) and (2.21) is the optimal control and optimal-value
function, respectively, by induction on k. For k"0, the optimal control is
S*
T
"¼

T
and the optimal-value function is

»
T
(P

T~1
, X

T
, ¼

T
),Min

ST

E
T
[P

T
S
T
]"(P

T~1
#hS

T
#cX

T
)S

T

"P
T~1

¼
T
#h¼2

T
#cX

T
¼

T
(A.1)

where we have substituted a
0
"h, b

0
"c, c

0
"0, and d

0
"0 in Eq. (2.21) to

obtain Eq. (A.1). Assuming that Eq. (2.21) holds for k, we will prove it for k#1.
Applying Bellman’s equation yields

»
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, X
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, ¼
T~k

)].

(A.2)

Using the induction hypothesis we substitute Eq. (2.21) into Eq. (A.2) and
obtain

»
T~k~1

(P
T~k~2

, X
T~k~1

, ¼
T~k~1

)"Min
ST~k~1
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(A.3)
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Using the laws of motion (2.18), (2.19), and (2.4) we obtain

»
T~k~1
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T~k~2

, X
T~k~1

, ¼
T~k~1
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]. (A.4)

Note that the function to be minimized in Eq. (A.4) is quadratic in S
T~k~1

.
Moreover, from the induction hypothesis a

k
*0 (if h*0) and therefore the

function is convex. It is straightforward to verify that the optimal solution is
attained at

S*
T~k~1

"A1!
h

2a
k
B¼

T~k~1
#

ob
k

2a
k

X
T~k~1

. (A.5)

Substituting Eq. (A.5) into Eq. (A.4) then yields Eq. (2.21) for k#1. Observe
that a

k
satisfies the following recursion:

a
k
"hA1!

h
4a

k~1
B, a

0
"h. (A.6)

Solving this recursion yields

a
k
"

h
2 A1#

1

k#1B . (A.7)

Therefore, the optimal control becomes

S*
T~k~1

"

¼
T~k~1
k

#

ob
k

2a
k

X
T~k~1

(A.8)

and the induction is complete.

A.2. Linear percentage price impact

As usual, we begin at the end by characterizing the optimal-value function
»

T
and then proceed recursively according to Bellman’s equation:

»
T
(PI

T~1
, X

T
, ¼

T
)"Min

ST

E
T
[P

T
S
T
]"E

T
[P
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¼

T
] (A.9)

"qPI
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T
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T
) (A.10)
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where

q,E
T~1

[exp(Z
T
)]"E[exp(Z

T
)]"exp Akz

#

p2
z
2 B (A.11)

since, by assumption, Z
t
is IID normal with mean k

z
and variance p2

z
. In the

next-to-last period, the optimal-value function satisfies:

»
T~1

"Min
ST~1

E
T~1

[P
T~1

S
T~1

#»
T
(PI

T~1
, X

T
, ¼

T
)] (A.12)
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MPI
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(1#hS
T~1

#cX
T~1

)S
T~1

#qPI
T~1

](¼
T~1

!S
T~1

)[1#coX
T~1

#h(¼
T~1

!S
T~1

)]N. (A.13)

The best execution at ¹!1 is then

S*
T~1

"d
x,1

X
T~1

#d
w,1

¼
T~1

#d
1,1

(A.14)

where

d
x,1

"

c(qo!1)

2h(q#1)
, d

w,1
"

q

q#1
, d

1,1
"

q!1

2h(q#1)
. (A.15)

Therefore, the optimal-value function »
T~1

is given by

»
T~1

(PI
T~2

, X
T~1
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T~1

)"qPI
T~2

[a
1
#b

1
X
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1
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1
X
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#e
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#f
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]

(A.16)

where

a
1
"d

1,1
(1#hd

1,1
)!qd

1,1
(1!hd

1,1
), (A.17a)

b
1
"(1!q)d

x,1
, (A.17b)

c
1
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(hd
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#c)!qd
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), (A.17c)

d
1
"c(1#o)d

w,1
, (A.17d)

e
1
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, (A.17e)

f
1
"hd

w,1
. (A.17f)

Continuing in this fashion, we arrive at the following recursions:

»
T~k

"Min
ST~k

E
T~k

[P
T~k

S
T~k

#»
T~k`1

(PI
T~k

, X
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)]
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which yields the best-execution strategy:

S*
T~k

"d
x, k

X
T~k

#d
w, k

¼
T~k

#d
1, k

(A.19)

where
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Hence
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where
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This set of recursions completely characterize the best-execution strategy MS*
t
N,

and the expected cost of best execution is given by

»
1
(PI
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